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The Problem

oDesk is a job site where employers post jobs, and contractors apply and get paid for work done. We are 
interested in the solving the following questions:

1. Given a job opening, find a list of contractors suitable for the opening. 
2. Given a contractor C, find a list of contractors similar to C.

The answer to Q1 lets us recommend contractors to fill an opening requiring a certain skill set (e.g., find 
me a contractor skilled in python and mysql.) The current algorithm used on oDesk is the obvious one: 
match the skills required by the job to the skills the contractors claimed they have.

The answer to Q2 enables employers to look for a contractor similar in capability to another they are 
satisfied with (e.g., find me a contractor similar to Peter, who I am very happy with but is currently 
unavailable.) oDesk currently do not support this feature.

The Data

We define a node as a contractor, and an edge connects two contractors if they applied to the same 
opening.

LARGE SET: We are able to obtain records of job applications submitted to oDesk for the first half of 
2011. Initial counts shows a total of 90,552 employers created 457,250 openings, on which 272,761 
contractors submitted a total of 5,734,033 applications. Joining contractors that applied to the same jobs 
resulted in a graph of 272,761 nodes and 84,722,454 edges. 

MEDIUM SET: Filtering out openings that did not result in any hiring nets 46,619 employers, 245,960 
openings, 134,255 contractors, and 1,409,750 applications. (134,255 nodes and 38,612,154 edges).

SMALL SET: From the Small Set, keep only those in MEDIUM SET that relates to contractors who had 
worked in more than 3 jobs. This resulted in 42,696 nodes and 4,307,972 edges.



The nodes in the SMALL SET exhibit the following properties (k is the degree of a node):

* Min(k) = 1
* Max(k) = 57,219
* Avg(k) = 678
* Stddev(k) = 1696

Plotting the degree distribution of the nodes:

From the PDF and CCDF, we can see that the distribution is not power-law.

The Method

Girvan [1] introduces the property of community structure (sometimes also called clustering) in which 

network nodes are joined together in tightly-knit groups between which there are only looser connectors. 

In contrast to the idea of the betweenness centrality of a vertex, defined as the number of shortest paths of 

other vertices through the vertex, Girvan defines the edge betweenness of an edge as the number of 

shortest paths between pairs of vertices that run along it. If a network contains communities that are only 

loosely connected by a few inter-community edges, then all shortest paths between different communities 

must go along one of these few edges. Girvan describes an algorithm that accentuates and removes these 

high edge betweenness links to reveal the communities as cluster of nodes become separated from one 

another. The algorithm incrementally breaks the network down into separate communities all the way 

down to single vertex. The output of the algorithm is in the form of a dendogram which represents an 

entire nested hierarchy of possible community division for the network.



Newman [2] details the original algorithm in [1], and further define a measure called modularity, meant to 

quantify the quality of a particular division of a network. As the algorithm in [1] outputs the dendogram of 

the network, the modularity measure seeks to tell where we should cut the dendogram to obtain a sensible 

division of the network. At each division in the dendogram, the modularity of the network is calculated. 

Local peaks of the modularity graph indicate particularly satisfactory splits. The authors showed that the 

application of the measures produces the expected result when run against networks with known 

communities, and accurate and reasonable result when run against networks without prior knowledge of 

communities.

Clauset [3] proposes an algorithm that speeds up the algorithm in [1] that runs in O(n3) time for a network 

of n nodes. We coded the algorithm described in [3] to find community structure among the network of 

contractors in the data sets. The clustering algorithm is of order O(md log n), where m is the number of 

edges and d is the depth of the dendogram. 

We start from the initial state where each node is its own community. The algorithm keeps a sparse matrix 
that maintains the value of ∆Q for communities i and j, where Q is the modularity of the network. ∆Q is 
the contribution to Q should we merge communities i and j. Each time we go through the loop, we select 
the max ∆Q, and merge the two communities corresponding to the ∆Q, and recompute ∆Q for any 
communities that were affected. Naturally, Q keeps increasing as long as ∆Q is positive, and Q keeps 
declining as soon as ∆Q becomes negative. We exit the loop at maximum Q, which is the precise moment 
when ∆Q turns negative. At the end of the loop, we should be left with a set of distinct communities, each 
with multiple nodes, that cannot be merged without decreasing the modularity of the network. 

We wrote the clustering program in the GO language for its speed and its parallel processing capability 
using coroutines. We have not, however, utilize any parallel processing in the current code, i.e. at this time 
it is single-threaded. The input of the program is a file containing the edges. The output is a dendogram. 

To debug and verify the code, we run it against the Karate Club data. The initial output was not optimal. 
We went back to look at [2] Newman in detail, and were able to find an error in [3]. 

From [2], page 16:
[49] As discussed in [33], it is crucial to make sure each edge is counted only once in the matrix eij—the same edge should not appear both 
above and below the diagonal. Alternatively, an edge linking communities i and j can be split, half-and-half, between the ij and ji elements, 
which has the advantage of making the matrix symmetric. Either way, there are a number of factors of 2 in the calculation that must be 
watched carefully, lest they escape one’s attention and make mischief.



As it turned out, the initial calculation of Q in [3] is missing a factor of 2. After the correction, we were 
able to obtain almost optimal result of the Karate Club data: 3 distinct clusters, where if we let the 
algorithm run for one more iteration, we would have gotten the correct answer of 2 clusters.

We were reasonable satisfied with the correctness of the algorithm, and we proceeded to optimize it for 
large data sets. Efforts in parallelizing the algorithm were not fruitful. It turns out that each step of the 
algorithm does only very small amount of computation, and our effort in using coroutines resulted in 
more overhead than savings. We then focused our attention on optimizing the data structure involved in 
the algorithm, and were able to speed it up by a factor 4.

We were only able to run our algorithm on the SMALL SET due to time constraint.

Evaluation

To measure correctness of the communities, we match the output of the clustering algorithm against the 
contractor self-described category. The table below shows the top-8 matching ratio of all contractors 
which is highly encouraging. 

 cluster |         ctype1         | cnt1 |         ctype2         | cnt2 | cnt_total | ratio 
---------+------------------------+------+------------------------+------+-----------+-------
  814823 | Web Development        | 9369 | Design & Multimedia    |  999 |     11595 |  0.89
 1331543 | Writing & Translation  | 2526 | Administrative Support | 1688 |      6981 |  0.60
   29897 | Writing & Translation  | 3214 | Web Development        | 1345 |      5876 |  0.78
  395099 | Writing & Translation  |  194 | Sales & Marketing      |   75 |       453 |  0.59
 1026009 | Writing & Translation  |   21 | Administrative Support |   16 |        53 |  0.70
  856396 | Writing & Translation  |   10 | Design & Multimedia    |    8 |        21 |  0.86
  717037 | Web Development        |    7 | Writing & Translation  |   10 |        19 |  0.89
  296857 | Writing & Translation  |    8 | Administrative Support |    7 |        17 |  0.88

Conclusion

To answer Q1, we simply find the community that matches the required skill set specified by the opening, 

and return the nodes in the community.

To answer Q2, we first pinpoint the node representing the sample contractor C, and return the other 

members of C’s community. 



The algorithm to pick a contractor that would result in a positive outcome is a separate problem, 
involving:

1. the feedbacks of the contractor
2. how busy is the contractor
3. is the contractor looking for work
4. does the contractor reside in the same geographical region of other hires in the employer

Central to our project is the empirical proof that community structure built using the behavior of the 

contractors is as good or better than the self-classification of the contractors. We are highly encouraged by 

the result, pending more detailed analysis using large data set.
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