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1    Introduction 
 
In recent years, there has been a lot of interest in understanding how nodes get influenced in networks, 
and how does their influence propagate to their neighbors. In online social networks, users receive feeds 
about their friend’s online activities and when a user sees their social contacts performing an action such 
as joining an online community, that user may be influenced to perform the action themselves. In this 
project, we want to study how a node influences other nodes, and how a nodes' influence can be used to 
predict future links in the network. We propose an influence based supervised learning task and use it to 
predict new friend relationship links in a network. 
 
2    Data Set 
 
last.fm data:  We collected data from a music website last.fm. It was founded in the United Kingdom in 
2002. It has claimed over 40 million active users based in more than 190 countries. The API is pretty 
rich and we can get user information such as user’s name, age and address, play history and their friend 
list. A user, once logged in on last.fm, can view in real-time his/her friend's music activity. The last.fm 
API allows us to call methods that respond in REST style xml. API documentation is available at: 
http://www.last.fm/api/intro. We collected datasets for users in Spain, United Kingdom and US.  
 
3    Data Set Statistics 
 
We collected data for about 10,000 users each for Spain and United Kingdom. The data distributions for 
number of friends, activity and number tracks for users from to Spain and UK look very similar. 
Figure:1 shows the distributions for UK users.  
 
We could not collect the list of tracks that a user listened for all the users as some of them have set their 
track-list as private. However we found that this percentage was relatively small for both Spain and UK 
data sets.  3.6 % users from UK, and 5% of users from Spain as they have kept their track-list private. 
  
Since the API limits the maximum size of track-list in the method call to 200, some users can have very 
high activity while others stay inactive. If a user is highly active, the maximum number of tracks in our 
dataset for this user can be a result of only one or two days of his activity. According to our algorithm, 
the influence score for such users will be high, even though we have less data about them in terms of 
number of days of activity. For the less active users the track listing might be the result of several days 
of activity and thus might be lower than the highly active users. However from the distribution shown 
below we see that most of the users have activity of between 100 to 400 days. One outlier in the tracks 
distribution graph represents the users who have kept their track-list private. 
 
Both the datasets have very similar distribution for number of friends, user activity and number of tracks 
listened to by a user. The average number of friends for Spain data set is 130, and that for the UK data 
set is 100. Very few users have more than 400 friends. Graph shows that 40 users have 1000 friends. 
1000 was our maximum limit on number of friends that can be fetched. These might be some 



hub/celebrity nodes connected to lots of users.   
 

 
            Figure 1 : UK dataset Distributions 

4    Algorithm 
 
How influence scores are calculated? 
Consider a network G (V, E), where V represents set of users and E represents set on links between these 
users, a user A connects to user B at time tcA,B. We say that node B is influenced by node A, if B performs 
same action a, that A performed soon enough. If user A performed action at tA,a  and B performed the 
same action at time tB,,a,, we define influence of node A on node B as follows:  

  )t,f(t
|tc>tandactionsa|aaction|

=Inf aB,

BA,Acta
aA,

BA,aB,B
BA, 






1
    [1] 

 
t A,a= time action a was taken by node A  
tcA ,B= time nodes A and B got connected  
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f ( t1 , t 2 ) = function measuring time decay of t2 w . r . to t 1  
We choose f(t1, t2) as e(-(tB,a – t A,a)). 

 
In our dataset user action is defined as listening to a track. We assume that influence scores by individual 
neighbors of a user are independent. Thus, if we have a model for capturing individual influences, we 
can compute the aggregated influence. We then define the aggregated influence of node A as:        
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To normalize the level of activity of A’s neighbors, we take a weighted average for all its neighbors. The 
intuition for this normalization is that node A is highly influential if node A can influence its highly 
active neighbor(s). In our dataset, nodes are listeners and we define influence of listener A on listener B 
as how often and soon enough, user B listens to same songs that A has recently listened to. 

 
5    Feature Engineering 
 
Choosing an appropriate feature set is the most critical task of any learning algorithm. Our training and 
test data will consist of observations representing edge/link between a pair of nodes. We chose the 
following features for our predictor: 
 
5.1   Aggregated Features 

  
 Aggregated influence score of user A, InfA: We calculate this score as defined in Equation [2]. 

 
 Aggregated influence score of user B, InfB: We calculate this score as defined in Equation [2]. 

 
 Average aggregated influence scores of common neighbors: This feature represents the 

connectivity of user A and user B. It is computed by taking average of scores to common 
neighbors of User A and User B. 
 

 Influence of Users at 2 hops and 3 hops distance: User A and user B’s 2 hop distance is 
calculated via their common neighbor C (A->C->B). We calculate influence of nodes at 2-hop 
distance as:  
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The above formula can be extended to calculate influence of nodes which are 3 hops away.  

 
 Influence concentration on common neighbors: We calculate this as a ratio of A's influence on 

common neighbors of A and B, with A's influence on its own neighbors. It is defined as:  
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      Similarly, we calculate the concentration of B’s influence on common neighbors.  
          

 In order to deal with the cold-start problem, i.e., if two nodes are the new nodes, with no or very 
little activity data, we will use the attributes and similarity features of the nodes and edges along 
with the influence based features. 

 
5.2  Similarity Based Features: For link prediction, features that represent some form of similarity 
between the pair of users have shown to be very effective [3]. We chose the following similarity based 
features: 
 

 Track Genre Similarity: We measure the proximity between two users by similarities between 



the genre of tracks they have listened to. From our entire set of tracks we compute top 10 genre 
that are most listened to. Based on the track-list of each user we calculate their genre scores as a 
normalized vector of frequencies of top genre. We calculate the track similarity between two 
users as the Euclidian distance between genre score vectors. 

 Track Similarity: Two users have similar music interests if their track lists have a good amount 
of overlap.  
We define track similarities as follows: 
o Overall track similarity between A’s and B’s track-list |
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
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o Track similarity for user A |
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o Track similarity for user B |
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 Friend-list Similarity, Album Similarity and Artist Similarity: These scores are calculated by 
using formulae similar to those for track similarity. 
  

5.3 Topological Features 
 

 Shortest Path Length: This feature is one of the most significant in link prediction as we 
found in our research. [1] and [5] showed that in an online social network most of the new 
connections are made between close neighbors. We used the smallest hop count as the shortest 
path distance between two nodes. We also considered calculating weighted influence score 
based path length between two nodes. This can be a directed path length in which each edge 
has a weight equal to the influence score between the two nodes connected by this edge. Since 
this is very expensive to compute we did not include it in our current set of experiments. 

 
 
6    Classification Algorithms 
 
There are numerous machine learning algorithms for classification like Decision Trees, SVM, ANN, 
Naive Bayes, etc. Each of these has its own characteristics and underlying assumptions. For this report 
we have used kernel SVM, Random Forests, Gradient Boosted Machines, Logistic Regression and 
adaBoost to predict if a pair of users are connected or not. 
 
In our results the accuracy corresponds to the proportion of test examples correctly classified, and this is 
our primary goal in the task of supervised learning. This results in a relatively higher cost of 
misclassifying a positive example (i.e. connected pair of users) compared to that of misclassifying a 
negative example. To compensate for this, we have performed a weighted bagging while performing 
Gradient Boosted Machines, so that we have relatively higher weight in training set for positive 
examples. We compared the performance of the above classification algorithms using different 
performance metrics like Area Under Curve(AUC), accuracy, precision-recall, sensitivity-specificity. We 
used 5-fold cross validation for the results reported. We used F-measure such that it takes both the 
precision and recall into account to understand the true accuracy of the model on the test data. 
 
We also aggregated the predictions from the 5 classifiers to serve as an ensemble e1. By aggregating the 
predictions from different classifiers the resulting model will not be susceptible to variance errors. 



7   Results and Findings  
 
From the data of about 10,000 users each for Spain and UK, we randomly sampled 50,000 pairs of 
connected and disconnected pairs of nodes. This served as our base data. We randomly sampled about 
2/3rd of this base data to serve as the training data for the model and the rest as the test data. In both the 
datasets, we kept the counts of positive classes and the negative classes the same. Therefore, a baseline 
classifier would have accuracy around 50% by classifying all the testing data points to be equal to 1 or 0. 
We used R packages for modeling and evaluation.  
 
Authors in [3] show promising results with similarity based features for their link prediction problem. 
We implemented most of their similarity features which we were able to apply to our data set. To 
compare how influence based feature performed in comparison with similarity based features, we did 
experiments with similarity and topological features, followed by experiments with influence and 
topological features. The performance comparison of each of the learned model on the unseen pairs of 
nodes is shown below. Table 1 shows performance metrics with similarity and topological features and 
Table 2 shows metrics with influence and topological features. 
 
All our models achieved accuracy above 80%, which indicates that our features have good 
discriminating ability. Results with influence based features are very close to the results reported using 
similarity based features. The ensemble method gives a slight improvement in recall measure for 
influenced based features. Recall measures are of high importance in link prediction because they 
represent the proportion of actual links which are correctly identified. 
 
All the models have similar precision-recall behavior. Their precision value is higher than recall value 
for predicted links. This means that the models have more false negatives than false positives i.e. the 
models are missing actual links more than they are predicting false links. For LastFm it might make 
sense, because some users might be connected due to reasons that are not captured by any of our 
features, such as they are acquaintance or classmates etc.   
  
The Area Under Curve (AUC) is equal to the probability that a classifier will rank a randomly chosen 
positive instance higher than a randomly chosen negative one. All the models have high score for AUC. 
Since it is a binary classification problem, Recall and Sensitivity measure have the same values. 
 

Method AUC Accuracy F-measure Precision Recall Sensitivity Specificity 

Kernel SVM 0.89 88.54 88.26 91.04 85.65 85.65 91.47 

Random Forest 0.89 88.72 88.39 91.68 85.32 85.32 92.17 

Gradient Boosted Machines 0.89 88.82 88.52 91.55 85.68 85.68 92.00 

Logistic Regression 0.89 88.61 88.32 91.19 85.62 85.62 91.63 

AdaBoost 0.89 88.71 88.33 91.98 84.95 84.95 92.50 

Ensemble e1 0.89 88.77 88.44 85.38 91.72 91.72 96.17 

Ensemble e1 = argmax (kernel SVM, Random Forest, GBM, Logistic Regr, AdaBoost) 

Table 1: Classifier performance with similarity and topological features 



  

Method AUC Accuracy F-measure Precision Recall Sensitivity Specificity 

Kernel SVM 0.89 88.49 88.20 91.09 85.48 85.48 91.53 

Random Forest 0.89 88.81 88.41 92.27 84.85 84.85 92.80 

Gradient Boosted Machines 0.89 88.79 88.43 91.93 85.19 85.19 92.44 

Logistic Regression 0.89 88.67 88.29 91.97 84.89 84.89 92.50 

AdaBoost 0.89 88.74 88.33 92.29 84.49 84.49 92.84 

Ensemble e1 0.89 88.81 88.41 84.92 92.21 92.21 85.87 

Ensemble e1 = argmax (kernel SVM, Random Forest, GBM, Logistic Regr, AdaBoost) 

Table 2: Classifier performance with influence and topological features 

 
7.1   Feature Selection 
 
In order to understand our dataset better, in terms of the importance and relevancy of each of the 
features, we used the Forward Stepwise Rank, Backward Stepwise and All Subset methods for feature 
selection. Forward stepwise selection starts with an empty list of predictors and fills up the list one 
predictor at a time, choosing the predictor (not already in the list) that minimizes some objective error 
function for the base model. We chose Ordinary Least Square as our base model and SSE as the 
objective error function. Backward stepwise selection works in a manner quite similar to the Forward 
Stepwise method, in which it starts with a list consisting of all predictors and removes one at time, the 
predictor that when removed minimizes the SSE the most. All subset selection chooses top k subsets 
from each of the 2p - 1 combinations (p = # of predictors) of predictor selections. Table 3 shows the 
result of these methods along with feature type. Least Squared Error of these methods were: forward 
selection: 0.098,  Backward selection: 0.0987; All-subset : 0.0989. 
 
We see that the shortest path feature is the most significant among topological features. Influence of 
common neighbors of A and B is more significant among influence features. We can infer the reason 
behind these rankings by looking at the distribution of the features. Figure 2 shows the distribution of 
some of the features on log-log scale. The blue curves in the graphs show value for the connected nodes, 
and the red curves show values for the disconnected nodes. From these graphs we see that most of the 
features follow power law distribution. 
 
The reason behind the strength of the shortest path feature can be seen in its distribution plot. For 
connected users the mean distance between the user pair is 0.5 on the log scale, whereas the same for the 
non-connected users is 1.2. Due to this noticeable difference in distribution, classifiers are able to 
discern that connected nodes are concentrated towards low feature value and non-connected users have 
high feature value. Similarly we can explain why friend similarity, genre similarity and influence of 
common neighbors of A and B are ranked higher. 
 
The average influence on nodes at 3 hop distance (avg3hopAB) is ranked higher than the average 
influence on nodes at 2 hop distance (avg2hopAB). Intuitively this looks incorrect, because most of the 



new links are made between friends of friends. Distributions in Figure 2 also do not explain this. To 
verify this further, in the training data, we counted the number of non-zero values of influence on 2 hop 
neighbors and found that all the values up to 75th percentile are zero. Whereas, values for influence on 3 
hop neighbors have non-zero scores for 50% of the training data. We can improve this by either 
collecting more friend data for each user or collecting data more strategically depending on user 
connections. 
 
 

Table 3: Feature Ranking 

Feature Type 
Forward 
Stepwise 

Rank 

Backward 
Stepwise 

All-
subset 

 
Feature Type 

Forward 
Stepwise 

Rank 

Backward 
Stepwise 

All-
subset 

shortPath Topological 1 Y Y  infA Influence 11 Y Y 

frndSimB Similarity 2 Y   avg3hopBA Influence 12 Y Y 

frndSimA Similarity 3 Y   Avg2hopAB Influence 13 Y Y 

genreSim Similarity 4 Y Y  infAonB Influence 14 Y Y 

infCmnNbhAB Influence 5    trackSimB Similarity 15 Y Y 

infB Influence 6 Y Y  trackSimAll Similarity 16 Y Y 

artistSimB Similarity 7 Y   tagSimALL Similarity 17 Y Y 

frndSimALL Similarity 8 Y Y  trackSimA Similarity 18 Y Y 

infConcAonCmnNbh Influence 9  Y  tagSimB Similarity 19 Y Y 

infConcBonCmnNbh Influence 10 Y Y       



 
 

 
FF 

 
    Figure 2 : Distribution plots for feature values 
 
 
 
7.2 Correlation Chart 
 
Correlation chart of the features is shown in Figure 4. Red color represents non-connected users and 
blue color represents connected users. The darkness of both the colors is proportional to the correlation 
of the feature. From the graph we see that shortest path, friend similarity, genre similarity and aggregate 
influence of common neighbors(InfCmnNbhAB) are highly correlated with the response feature 
“connected”. 
 

shortPath – shortest path between A and B 
frndSimB – Friend similarity score for B 
genreSim – Genre similarity score for A and B 
infCmnNbhAB – Avg of influences of common neighbors of A and B 
artistSim – artist similarity score for A and B 
frndSimAll – Overall griend similarity between A and B 
InfA - Agg influence score of A 
infConAonCmnNbh – concentration of A’s influence on common neighbors 
infAOnB – influence of A on B   
infCmnNbhOnA – influence of common neighbors on A 
avg2hopAB – Average of influence of nodes As which are 2 hops away from B           
avg3hopAB – Average of influence of nodes As which are 3 hops away from B 
 
 



 

 
 
     Figure 3:  Feature Correlation Chart 
 
 
8   General difficulties and Assumptions 
 

 In our dataset, we have a timestamp for when a user creates his/her account but it doesn’t have 
information about when two users get connected. Therefore, we are assuming that all the 
connections for a user are made either at the time the user joined or before the starting time of 
our sampling. Since our influence based predictors required actions to be timestamped, we were 
not able to utilize 'becoming friend with other user' as an action. 

 
 By sampling data based on geographical location we make an assumption that it is more probable 

for a user to connect to a friend located closer physically i.e. the number of short range links for 
a user are more probable than longer range links. This however can introduce some bias into our 
dataset. We plan to run more experiments with larger datasets and see how our accuracy changes 
with datasets from other locations. 



 If user A and user B listen to a track T at time Ta and Tb respectively, and Ta < Tb.  We calculate 
influence of user A, on user B as a function of (Tb - Ta). However, it is possible that User B had 
already listened to track T at some other time Tb'<Ta, and he already knew about the track T. But 
on the online social network interface users get real time feeds about their friends activities, so 
even though they already know about an event, they might still be more interested in repeating it 
after seeing that one of their friends have done it recently. 

9   Future Work 
 
The last.fm API did not provide a way to know when(timestamp) two users were connected. We believe 
that in deducing true influence of a user on another user, it’s useful if we know when 2 users were 
connected to reduce the weight of actions performed before the connection was established. We plan to 
experiment on datasets that make this information available. 
 
Our work can be extended to study supervised link prediction in context based influence graphs. i.e. 
from an undirected graph of friend relationships, we generate a directed weighted graph, where the 
weight refers to the influence of a node on another node. For example, context can be users who listened 
to at least one "Rock" song. 
 
We also plan to experiment using influence based link predictors in an unsupervised setting to define a 
soft neighborhood (cluster) around each user to recommend friend relationships. 
 
10    Related Work 
 
Supervised methods for link predictions were extensively evaluated in [2], [3] and [4]. In [2] and [3] 
classifier uses node similarity, network’s topological properties as their feature vectors. These studies 
show that supervised learning techniques produce impressive results for link prediction. We compared 
our results with [3] and showed that influence based features show equally good results. Authors in [6] 
used roughly the same influenced based approach to study the influence diffusion within a network 
using probabilistic models. Even though their influence scores calculations are very similar to ours, our 
problem formulation, goals and data sets are different from theirs. The unsupervised methods for link 
prediction were extensively evaluated by Liben-Nowell and Kleinberg in [6], they found that the 
Adamic-Adar measure of node similarity [1] performed best. Link prediction in supervised machine 
learning setting was studied by the relational learning community in [7]. Their approach performs well 
but, the challenge with these approaches is primarily scalability. Another recent work by Backstrom, et 
al. [4], although different for our supervised learning method, also used to predicts new links in a social 
network. They use supervised random walks to learn edge strengths within a graph, these edge strengths 
are the used for predicting new links. 
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