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Abstract

The power grid is of crucial importance to the modern economy and in recent years it has drawn
also the attention of researchers in the nascent field of complex network science. Most previous works
in this field have been descriptive and mainly concerned with highlighting the structure that power
grids share with other types of networked (e.g., small world). We propose and develop the first steps
of a prescriptive study that investigates the situation in which a continuous shock (either in demand
or supply) propagates on a power grid. We are interested obtaining a tractable, analytic expression
of the aggregate volatility resulted from the shock, yet preserving the characteristcs of an engineer-
ing network that obeys certain physical laws (i.e., Kirchhoff’s theorems). This framework can be
then used to set-up problems of economic interest in this context, such as an optimum investment
in network elements to achieve minimum disruptions due to a shock. Here we report on identifying
the physics-motivated interaction mechanisms between elements in the network. Preliminary results
indicate that under certain assumptions and simplifications certain quantities (power flow into a
node and likely an “investment® cost associated with that node) may be expressed via a typical
network centrality measure - the Bonacich centrality (related to Google’s PageRank). Moreover, we
plan to use our framework to study empirically shocks on a power grid. For this we implemented
algorithms from the complex power networks literature to generate random test networks with real-
istic characteristics that may be tuned to highlight certain properties or results.

As instructed by Prof. Leskovec, I mention that the week during which the project was due, I
had an accident in which T have broken my right arm (which I use to write). This resulted in me
not being able to go through a part of the derivations and implementations that I proposed in the
milestone.

1 Introduction

The U.S. electric power generation and distribution network has been hailed as “the largest and most
complex machine in the world* [Ami04] and the “20*" century’s engineering innovation most beneficial
to our civilization*“ [Amilla]. It is a greatly complex network that extends over a vast geographical
area whose operation poses both technical (e.g., robustness under failure) and human-related (e.g.,
consumption behaviors) challenges. In recent years the concept of smart grid has received much atten-
tion as a way to reduce energy use and the associated environmental costs, and to increase efficiency
and reliability of power generation and delivery through better monitoring and control. In the Energy
Independence and Security Act of 2007 (Section 1301), it was stated that the Smart Grid should allow
for “increased use of digital information and controls to improve reliability, security, and efficiency of
the electric grid”, as well as “dynamic optimization of grid operations and resources, with full cyber-
security...” [Amillb]. This and similar legislation in the U.S. and other countries [Amilla] has been
adopted to allow a framework for investment in grid technologies that would counterbalance the steady
rise in demand for electricity (in the U.S., electricity amounted for 10% of total energy production in
1940, 25% 1970, and 40% in 2002; China’s electricity use is projected to double by 2020 [Amillb]).
The smart grid of the 21! century is also expected to be more robust to outages and failures caused by
disturbances in supply or demand, which can cause significant financial and other losses (around $80
billion annually in the U.S., and $188 billion worldwide [Amillb]). Moreover, cascading failures can
affect a large number of customers and cause significant economic disruptions (e.g., the August 2003
Northeastern blackout, with over 50 million customers affected and $6 billion in losses). Estimates
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[Amillb] show that both financial and environmental benefits can be substantial - ~$70 billion reduc-
tions in costs associated with blackouts and ~18% reductions in GHG emissions yearly - for projected
investment costs of around $1.5 trillion.

In this context there has been a sustained effort by researchers to understand the large-scale
structure of this type of complex systems, especially for the grids in the U.S. and in Europe. The
several areas that have received particular attention in the complex systems literature include the
structure of the power network (especially whether the grid has small-world [WS98] or scale-free prop-
erties [CP05]) and the reliability and robustness of the grid under different type of attacks or failures
[AAN04, SRCCMVO08, [HOCS™10]. Earlier studies (e.g., [WS98], [CP05] or [AAN(4]) abstract away
from the actual electrical properties of the network and use a simplified, connection-based topology, in
which power generators and distribution stations are nodes, and transmission lines are edges. Newer
work has addressed this shortcoming by incorporating into the network definition the some of the un-
derlying physical characteristics that govern the distribution of electricity [WST10d, WST10bl [HBOS].
It has been shown [WSTT10c] that the node degree distribution in real power networks does not follow
a power law (as in scale-free networks), but is the convolution of a geometric random variable with a
discrete random variable.

Traditional engineering literature on power grids focuses on solving (approximately or exactly in
some particular cases) optimization problems that make use of detailed physical characteristics and
couplings between parts of the system. Examples include the optimal power flow problem (OPF, which
calculates the optimum generation at buses in the power grid given engineering constraints and a
generation cost function) |GIK™11] or the transmission planning problem (which calculates the best
placement of generation given transmission constraints and costs) [ERGO8|]. On the other side, much of
the complex systems literature on the electric grid has focused on descriptive problems, as illustrated
above. The main thread in existing work has been to describe statistical properties of connectives,
electrical topology, and structural resilience to failure. We do not know of any attempts to model
or quantify the global (system-wide) risks and opportunities presented by the network structure with
respect to exogenous processes, in particular effects of operational decisions (e.g., infrastructure invest-
ments or renewables integration) or market-side events (e.g., demand or supply shocks). In our view this
is mainly because of barrier posed by modeling such highly-complex systems that obey specific physical
laws (e.g., Kirchhoff’s laws). In this study we propose to arrive at a description of demand-induced
processes on the grid that is complex enough as to account for the main physical characteristics of this
system, yet simple enough to allow tractability and more generalizable statements about the economic
functioning of a smart grid.

The rest of this paper is organized as follows. In Section [2| we review several practical applications
of interest in the context of the smart grid that motivate our work. In Section [4] we present relevant
elements of power network theory that we use in this paper to develop a simplified approximate model
of demand shocks propagating on an electrical topology and show how it may be applied to draw
conclusions about investment decisions that increase the reliability of the grid under demand shocks.
In Section [5| we describe the empirical framework we used to apply our model to real and simulated
power grids. We conclude in Section [6]

2 Background and motivation

Below we introduce several aspects of the electricity market that motivate our work. The discussion
is focused on the U.S., but the issues presented are generalizable to any other country with significant
grid penetration.
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Uncertain demand and supply. On the supply side renewable sources (wind, solar) have effectively
zero marginal cost of generation; however they are also intermittent - you cannot know in advance how
much wind power you will generate. On the demand side each user consumes an amount of energy
that is only revealed in real-time. Utilities need to carefully balance power dispatch under variable gen-
eration conditions according to their forecasts of generation and consumption, and within a dynamic
market to minimize costs of service [BRK™11]. The increased consumption monitoring capabilities of
the smart meters allows extracting patterns in user demand profiles that may lead to better market
segmentation for demand-response applications [ARS11]. Better matching of demand and supply also
has important environmental consequences, as utilities fire up polluting coal plants to meet real-time
demand that was not accurately forecast [FFPH09]. We are not aware of any studies (either in the
complex networks literature, or in the power engineering literature) that attempt to draw higher-level
conclusions about the interactions in such a technological system without resorting to solving fully-
specified engineering problems (e.g., [GIK™11, [ERGOS]).

Risks of power delivery failure. Cascading failure of service in power grids (i.e., blackouts) can
achieve massive scale, with millions of customers affected and billions of dollars in losses, such as the ones
in the Northeastern U.S. and Italy in 2003, or the one in Germany in 2006 [HOCS™10,[Ami04]. Studies of
the connectivity topology of the electrical grid for the U.S. [WS98, [AAN04, [CP05] have shown that this
system resembles a small-world network, which is most vulnerable to failure of highly-connected nodes.
It has been shown that incorporating the electrical characteristics of the power network (e.g., admit-
tance matrix) into the analysis leads to large changes in node centrality [WST10d, [WST10b, HBCSBI0].
The few analytical models of cascades in complex networks have typically adopted a extremely “binary
approach to node failure (i.e., a node can be either ”active” or “disabled” with no in-between states),
which makes it very hard to carry an analytical approach. Thus most complex network analyses of
blackouts, including very highly cited works [MLO02] where the authors proposed a model of load redis-
tribution in case of electric bus failure, have been descriptive in nature.

Robust infrastructure investments. There has been much criticism that the level of infrastructure
spending in the U.S. is lacking and has not increased at par with the increase in energy demand [Ami04].
Some studies have argued that increased infrastructure spending (e.g., on capacity increase) will not
necessarily lead to better service reliability (or alternatively less vulnerability to failure) because of
inherent inefficiencies in the electric topology of the grid [WST10a]. Although the complex networks
framework is well suited to analyzing the factors that influence the system-wide behavior of large-scale,
interconnected systems, we haven’t been able to find any studies that analyze the financial effect of
operational decisions that influence network characteristics as to fit a planner’s objective. We would
like to study infrastructure investment decisions that contribute to the absorption and integration
of variable demand and supply, and that may increase the system robustness under various types of
failures.

3 Electric network theory

We first review several concepts relevant for electrical networks (following [Sac03, [LL10]). We use this
exposure to motivate our proposed simplified model of interactions between components of the electrical
network.

Electric topology of the power grid

Consider an AC electric network. It is composed of N nodes, i.e., generation and load buses (“terminal
nodes*), or transmission buses ( “internal nodes“), and L branches, i.e., the transmission lines. A special
node is the reference (ground) node of zero voltage; any branch that connects to that node is a shunt
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Figure 1: Nodes and branches in an electrical network. Currents follow Kirchhoff’s First Theorem. The relation-
ship between currents and voltages is given by Ohm’s Law. Source: [Sac03].

branch. The topological properties of the network may be summarized via the L x N line-node incidence
(or “connection“) matrix C (here [ is a branch and s, ¢, and k are nodes):

C(l,s) =+1
C:¢ C(l,t) =-1

C(l,k) =0, withk #sort
Each node h is characterized by a (complex) voltage vy, while each transmission line [ has an impedance
z(l) = r(l) + jx(l), with r(I) the resistance and z(l) the reactance, and an admittance y(l) = 1/z(1) =
g(l) 4+ jb(l), where g(1) is the conductance, and b(l) is the susceptance. Then the branch voltages are
given by = CV, with V = (91, 02,...0y)7, and by Ohm’s Law the branch currents are given by
f = diag(XY1)a = diag(YL)CV, (1)

with Y7 the L x 1 vector of (complex) line admittances.

Current flows and voltages follow (to a first approximation) Kirchhoff’s Current Law (KCL, arising
from to conservation of charge), and Kirchhoff’s Voltage Law (KVL, arising from conservation of
energy). For any two nodes h and k, we may consider the situation depicted in Figure [I| where a
current 75, goes into node h, and a current zp; comes out of node k (a current 5o goes into the ground).
Using Kirchhoff’s First (Current) and Second (Voltage) Theorems, one may express the two currents
as

tho = YnoUp and
thk = Ynk(On — k) (2)

This may be extended over all branches hk that go out of node h:
N
lh = Lho + Z Lhk (3)
k=1
k4h
For the entire network this can be expressed succinctly as
=YV, (4)
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where Y is the admittance matrix and I the vector of externally injected currents. Then the network
admittance can be expressed as

Y = CTdiag(Y1)C, (5)

where the elements of the sparse matrix Y are given by:
- { Y(h,h) =50+ kot Uk
Y : B k#h
Y(h, k}) = —Yhk, (]ﬁ + h)

Power equations for the electric grid

Power flows along transmission lines from higher to lower voltages (in the direction of branch currents).
The complex voltage at node h can be written as @5, = v,e/*», where qy, is the phase difference between
voltage and current at steady state. Then it can be shown from Equations and that the complex
power Py, = vpiy = Py + jQp injected from the external at node h can be expressed in terms of the
active (Py,) and reactive (Q)},) components as follows:

N
2 .
Ph = vahh + vp, E Uk(thCOSOéhk + BhkSIDOéhk)

k=1
k£h

N
Qn = —U%th + vp, Z Uk(thSinOzhk — BhkCOSOéhk). (6)
k=
k;é}lL
If the network is predominately reactive (G = 0) and the phase shifts « are generally small, so the
above expressions may simplify to:

N
Py = vn Y vrBheounk
k=1
k#h
N
Qn = —vn Y VB (7)
k=1

As such, under the above assumption of zero transmission losses, the power entering node h coming
from node k£ can be expressed as:

Py = vpvpBpronk
Qin = —vi(Bno + Bhr) + Brikvnvg. (8)

Note that the active power P, depends on both electrical properties of the network (the branch suscep-
tances Bpy) and the phase angles ayy, whereas the reactive power @), does not depend on the phase
angles.

From the first part of Equation we may also express the phase angles as

a® = TP, (9)
with P the vector of powers injected at each of the nodes, 042 = ayp — o the phase angle with respect to
the node 0 chosen as reference, and T the matrix defined by T, = >, Bp,vpvr and Thy = —Bpivpv.

Now if we let the power at node ¢ vary bt d P;, the above Equation and Equation imply for the flow
power between nodes h and k:

6Pk = By (Thi — Thi)o P = (x0 P, (10)

where Bl/ch = Bkhvkvh.

ot
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4 Model of shock propagation on the grid

In this Section we describe the simplifying assumptions that we make to arrive at a description of the
interactions between nodes in a power grid that is locally linear. We argue that if assuming small
perturbations from an initial steady state and operation below the capacity threshold for network
elements one may arrive at results similar to complex network theory treatments of other problems
that study the flow of other quantities over a network medium.

Simplified power flow model

Suppose we are interested in a situation where node voltages are fixed (e.g., have been set to optimum
operating values by grid operators) for a lossless network (G = 0). The steady-state phase angles apy
and node voltages v, may be obtained by e.g., solving an optimum power flow problem |[GIKT11] or
an optimum transmission planning problem [ERGOS§|. Here we ask how surges in power either on the
demand or supply side propagate through this network operating at an engineering equilibrium point.

We start by noting that it is the active power that it is transmitted to the load nodes through the
electric network. Moreover, taking derivatives of the quantities in Equation (8] shows that the active
power is most sensitive to a change in the phase angles, whereas reactive power is mainly influenced
by changes in voltage magnitudes. Thus we may reasonably assume a situation where node voltages
are kept constant. In a simplified approach we consider the phase angles aj as jointly characterizing
network electrical topology along with the line impedances Bj; and node voltages v,. As such, in
Equations @ and above (the active power part) we combine the branch-specific coefficients into

Wi = v Brpogy, and define th = ZI:/WM . Note that the matrix {W}kh is mot symmetric because of
the vy term. Then the expression for the active power from Equation becomes:

Py, = PyWip, (11)

i.e., the power entering node k coming from node h is a fraction Wip of the power entering through
node h.

Consider now the situation in Figure 2] There the superscripts s and d indicate, in that order,
generated power (”supply”) and consumed power (”demand”). We thus define the net power produced
at a node h as

AP, = P — P{, (12)

with P;f the load at bus h and P; the generation at bus h. Note that AP, can be either positive (net
power generation) or negative (net power consumer). Depending on the sign of AP, nodes can be
either generators (AP}, > 0), consumer loads (AP < 0), or transmission nodes (AP, = 0).

Energy conservation requires that, for each node h, power flowing out of a node balances the power
flowing in and the (net) power produced (or consumed) at that node:

Pt = AP; + P (13)

Denoting II; = P]m we recall from Equation that I, = Zj PJQuthh, and thus we may use Equation
to write

O, = Y Wj(AP;+1I))
J

= > WP+ ) Will, (14)
J J
which in vector form amounts to writing
I1 = WAP + WIL (15)
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Figure 2: Energy conservation at each node: net power flowing into any node h equals net power flowing out.

Solving the above equation for the case AP, # 0 we arrive at an expression for the power flow entering
nodes in the network:
II=(1I-W) 'WAP. (16)

When AP, = 0 the above Equation suggests:
I = WII, (17)

i.e., for transmission nodes, the power flowing into each node is given by the entries of the eigenvector
corresponding to a unit eigenvalue of the steady-state weights matrix W. Note that power entering
each node in the network in Equation is related to the Bonacich centrality of that node. This
result is similar to other conclusions about centrality in the complex networks literature, e.g., [VBS11],
which studies the flow of of “corporate control” over the global network of trans-national companies.
Here we however highlighted the physics behind this conclusion for the case of a power network.

Optimum power injection model

Now suppose, on the contrary, that we are interested in the response of a grid operator when faced
with an external event affecting the economic and engineering operational state of the network, e.g.,
the sudden loss of continuous amounts of power at some nodes. Here we consider a lossy line G > 0 in
the case of small phase angles apy (sinap, = apg and cosap, = 1) and ask what the best response of
the grid operator is, given external (market) conditions.

Recall the expression for the active power in Equation @, and denote Hpy = G + Bpropg. An
external agent acts on node h (operating at voltage vy,) by drawing a current ¢, which amounts to a
power 7, = tpvp. Then we may write for the power injected at node h:

N
Ph = ”U,%th + vp, Z ’Uthk — LR Up. (18)

k=1

k£h
We are interested in generating the minimum amount of power such that some financial measure
is optimized. The best response to the external action ¢ is then linear in the voltages (we take

8Ph / 81}h = 0):
N

2Ghn + kaﬂhk -, =0 (19)

k=1
k£h
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Then in vector form we may write (with -y, = ﬁ)
v =1t — diag(y)Hv, (20)

from which we may solve for v:
v = (I— diag(v)H) "¢ (21)

This model is most closely related to [CBO11], where the authors formulate the optimal consumption
of a network agent in response to an externally-specified price signal and perfect knowledge of the
consumption levels of neighboring nodes in the network. The best response voltage at a given node is
related, as before, to the Bonacich centrality of that node.

Stochastic demand and supply and associated operational decisions

As future work we plan to investigate analytically how a shock in demand or supply propagates on a
network for which the simplified interaction mechanisms are as illustrated above. In the first setting
(simplified power flow model) we may explore several scenarios:

e Demand is fixed; we let supply be stochastic, i.e., P§ — P +e¢, with some shock e ~ N (0, 0?). We
may then calculate how much of o2 is present at some other node k in the network as power inflow.
Then we could define an optimal investment problem which associates a (linear, quadratic...) cost
with the perturbance at each node, then minimizes that cost;

e Supply is fixed; we let demand be stochastic similarly as before. In the current formulation it
seems that the two cases are equivalent when either is fixed. Perhaps some regularity conditions
set in that we need to be careful about, e.g., power flow sign changes may affect the weights Wik
through the phase angles?

e Either supply or demand receives shocks at more than one node; Are the effects superposable, or
are there correlations terms arising due to network interactions?

e Let both supply and demand be variable. Study implications of “forecastability” of supply vs
demand (i.e., which one has smaller variance). That is, let some demand and supply shocks appear
on the network; is it better in terms of investment cost to know the demand more accurately (lower
variance), or is it more cost-effective to have more information about the supply?

In the second setting (best-response injection) we could similarly study a stochastic external action
t ~ N(0,0?), and carry analyses as suggested above.

5 Empirical framework

As previously mentioned, we would like to be able to illustrate our model on a variety of power networks
that are both adjustable to fit our particular experiments, but at the same time retain the statistical
characteristics empirically observed in real grids. We first present measures of node centrality proposed
in the complex power grids literature that take into account some of the physical characteristics of the
underlying network [WST10b]. We then describe a method proposed in the literature [WST10b|] for
generating random networks that follow the observed statistical properties of real power grids. We shall
use the random electric topologies to illustrate our economic model for electric networks of varying sizes
and other characteristics. This will enable us to perform simulations that would generalize some of the
conclusions of the model.
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Measures of electrical centrality

Using the admittance matrix and its correspondence to the usual graph Laplacian one can extend the
usual notions of centrality - betweenness, degree, closeness, or eigenvector (i.e., PageRank) - to the

electric grid. In [WSTI10b] several such measures are described in close correspondence to the same

quantities derived from unweighted graphs. As such, degree centrality of a vertex v, Cy(v) = dz%f) =

% becomes the electrical degree centrality

Cu o) = @O )

n—1

Similarly, the eigenvector centrality (or Bonacich centrality [Jac08]) C.(v) = +— > =1 A(v,j)z; be-

>\max
comes

Colw) = ||

)\max i

ZAY(Uvj)xjH7
j=1

with Ay = =Y + D(Y).
Another centrality measure that we are interested in is related to closeness centrality, which in a
non-weighted network is the mean geodesic distance between two nodes:

n—1

B ZtEV’rw dG (’U, t) '

The geodesic distance dg above can be replaced by the “shortest electrical distance” between any ver-
tices v and ¢, dz(v,t) = || X2 (; j)e Erpath(vst) Zpr (6. 9)]]-

Ce(v) (23)

While the measures described above do incorporate certain aspects of the physics of a complex grid (that
is, the fact that transmission lines are heterogeneous in their intrinsic characteristics, summarized by
the complex impedance/admittance value), they actually fail to account for two fundamental physical
phenomena in power grids, namely:

e Physical power networks are directed in steady state [DY11], i.e., power flows in well-specified
directions along transmission lines. As such, the actual network is asymmetric (because of direct-
edness), which is not reflected in formulations in the literature.

e In physical grids, power doesn’t flow on shortest paths, or “shortest electrical paths”; rather,
it obeys Kirchhoff’s Laws [3] As such there are specific interactions between each node and its’
neighbors that are not captured in the simple formulations above.

Some of these concerns have been addressed to some extent in the complex power grids literature, e.g.,
in [DY11], where the authors have proposed a measure of link centrality based on the fraction of the
total current that flows through it from the source node to the sink node. There an approach based
on the graph-theoretic Min-Cut problem is proposed to calculate this centrality measure practically.
However we feel that our contribution will better address the above points as our treatment is built up
from basic principles.

Generation of random electric topologies

In order to apply our model in a variety of cases, we need to be able to simulate power grids that
are realistic in their statistical properties. As noted before, real power grids have been found to be
sparse networks that retain some of the characteristics of small-world neworks [WST10d|]. In partic-
ular, real grids have better topological connectivity than small-world networks, as they are formed of
interconnected small-world “communities” [WST10a]. The node degree distribution X in a power grid

http://www.stanford.edu/~adalbert 9


http://www.stanford.edu/~adalbert

follows a distribution that has a geometric part G (the long tail) and a discrete part D (that models
the irregularities that deviate from the geometric distribution) [WST10d]:

PX = PG °PD; (24)

where the o operator above indicates a convolution between the respective PMFs. The random variable
G is a truncated geometric with a threshold of kpax,
1— k
Pr(G = k) = k(. Pp_ (25)
>t (1 —p)ip

while the random variable D is discrete and can take a small number of values:

Pr(D=k)=pr, k=1,2,...K (26)

Electrical characteristics of transmission lines (admittances) may follow one of several types of
distributions, including clipped lognormal, lognormal, and generalized Pareto distributions. An original
random variable Y ~ fy (y) that is “clipped“ by an exponential cutoff at Zy,.x results in the variable

Zmax x
X ~ =—_— —Zmax] 1-— . 27
fX (-7;) Zmax — me < max 108 < Zmax)) ( )
The lognormal distribution is given by:
1 —logz—
logn(z|p, o) = e 2 . (28)
xoV 2w

The observations above are used in [WST10c| to formulate a model of a realistic electrical network
which we have implemented for this study. The main steps of this model are:

1. Generate several regular lattices (much like in the Watts-Strogatz small-world model), but with
a geometric distribution of the local neighborhood. These lattices are disconnected initially.

2. For each lattice, rewire several links such that there is non-zero correlation between rewired links.
[WST10c| uses a Markov process to ensure this property.

3. Generate several long-range lattice links to connect the previously-generated regular lattices

4. Generate impedances as described above and assign them to the different link types such that
local links have lowest impedance, and lattice connections have largest impedance. This accounts
for the fact that transmission line impedance depends almost linearly with physical line length.

Real power grids data

For this study we use several public datasets created by the IEEE that have been described in the liter-
ature and are available onlineﬂ These test-case networks of 14, 30, 57, 118, and 300 nodes (i.e., either
generators or distributor buses) are weighted graphs in which edges weights correspond to transmission
line impedances. The nodes have many electrical attributes that are relevant for thees power systems.
For example, the IEEE-300 system contains 300 nodes and 409 edges. These systems are referenced in
many power grid network analysis studies (e.g., [WST10b, [HBO§|). The schematic of the IEEE-30 bus
network is presented in Figure [3]

The literature references several other datasets, which unfortunately are either not detailed enough for
our analysis (i.e., do not contain physical characteristics of the network), or prove very hard to obtain
or are not in the public domain. Examples from the former category include the dataset on the power
grid in the Western U.S. that is used in, e.g., [WS98]. In the latter category we may list the NYIS0-2935
dataset (of the New York power grid) and commercial databases such as the one maintained by Platts,

IncEl

"http: / /www.ee.washington.edu/research/pstca/
Zhttp:/ /www.platts.com/
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IEEE-30 Bus System

single line diagram of the IEEE 30-bus test system

Figure 3: A real power network on 30 nodes (the IEEE-30 test case). Left: electric schematic; Right: node-link
topological diagram.

Empirical analysis

We implemented the algorithm for generating random electric topologies as described above. One
such random topology is presented in Figure [ for a network with N = 300 buses and approximately
m = 420 links (right panel). In the same figure (left panel) we present the a real dataset (the IEEE-300
test case) of a network with roughly the same number of nodes and links. We compute the three
different centrality measures for the two cases (real and random networks) to highlight the difference
between the topological and electrical characteristics as defined above. For the random case, we took
the average of Nyas = 100 test electrical networks generated at random. To generate the values of
the line impedances for the random case we used the clipped lognormal distribution discussed above.
The results of this exercise are presented in Figure [dl We observe that while the degree centralities
(topological and electrical) are relatively well matched for both the real and random networks, there are
large differences in the eigenvector and closeness centralities results for the topological and electrical
cases for both the random and real networks.

Another experiment that we performed was to study the behavior of distribution of the normalized
centrality indices with increasing network size. We generated networks of sizes IV between 14 and 1000
nodes, in which the size of a small-world sub-network scaled as V/N. For each value of N we retained
the average statistics over Nryias = 10 test electrical networks generated at random. We observe that
the closeness centrality is consistently higher for small network sizes, whereas the other two measures
slowly, but consistently decrease in value with increased number of nodes.

6 Conclusions

We have introduced and motivated an application of complex network theory for studying exogenous
processes on a power grid. We studied physical interactions between nodes on a power grid, and
show that under certain simplifying assumptions power entering a given node may be related to the
Bonacich centrality of that node. Also we show that under a scenario where the voltage at each node
is the decision variable, that quantity may also be expressed using a Bonacich centrality term. We
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|IEEE-300 Bus System

Random 300-Bus System

Figure 4: Example power networks. Left: real power network

simulated power network on 300 nodes using the algorithm in [WSTT0c].
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Figure 5: Centrality measures for real and random networks of N = 300 nodes and about m = 420 links (doubly
logarithmic plots). Left: degree centrality; Middle: eigenvector centrality; Left: closeness centrality.
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Figure 6: Centrality measures statistics vs random network size. Each column color-codes the distribution of the
centrality measure (in steps of 0.05 percentiles between 0 and 1) for a given network size. Top: degree centrality;
Middle: eigenvector centrality; Bottom: closeness centrality. Values are logarithmic.

thus set up a preliminary framework that may be used to investigate externally-induced shocks and
associated financial aspects.

Acknowledgments

This material has resulted from discussions with Profs. Dan lancu and Kostas Bimpikis (Stanford
Graduate School of Business). I acknowledge also useful discussions with Prof. Ram Rajagopal on
power grid analysis and modeling. I am grateful for their guidance and insights.

References

[AANO04] Réka Albert, Istvan Albert, and Gary L. Nakarado. Structural vulnerability of the north
american power grid. Phys. Rev. E, 69:025103, Feb 2004.

[Ami04] Massoud Amin. North american electricity infrastructure: System security, quality,
reliability, availability, and efficiency challenges and their societal impacts, 2004.

[Amilla] Massoud Amin. Smart grid: Overview, issues and opportunities: Advances and chal-
lenges in sensing, modeling, simulation, optimization and control. In 50th IEEE Con-
ference on Decision and Control (CDC) and European Control Conference (ECC), De-
cember 2011.

[Amillb] Massoud Amin. Turning the tide on outages: What are the true costs of implementing

- or failing to implenment - a stronger, smarter, and more robust grid. July 2011.

http://www.stanford.edu/~adalbert 13


http://www.stanford.edu/~adalbert

[ARS11]

[BRK*11]

[CBO11]

[CPOS]

[DY11]

[ERGOS]

[FEPHOY]

[GIK*11]

[HBOS]

[HBCSB10]

[HOCS*10]

[Jac08]

[LL10]

[MLO02]

[Sac03]

Adrian Albert, Ram Rajagopal, and Raffi Sevlian. Power demand distributions: Seg-
menting consumers using smart meter data. ACM BuildSys, 2011.

E.Y. Bitar, R. Rajagopal, P.P. Khargonekar, K. Poolla, and P. Varaiya. Bringing wind
energy to market. IEEE Transactions on Power Systems, 2011.

Ozan Candogan, Kostas Bimpikis, and Asuman E. Ozdaglar. Optimal pricing in net-
works with externalities. CoRR, abs/1101.5617, 2011.

D. P. Chassin and C. Posse. Evaluating North American electric grid reliability using the
Barabasi Albert network model. Physica A Statistical Mechanics and its Applications,
355:667-677, September 2005.

A. Dwivedi and X. Yu. A maximum flow based complex network approach for power
system vulnerability analysis. Industrial Informatics, IEEE Transactions on, PP(99):1,
2011.

A.H. Escobar, R.A. Romero, and R.A. Gallego. Transmission network expansion plan-
ning considering uncertainty in generation and demand. In Transmission and Distri-
bution Conference and Exposition: Latin America, 2008 IEEE/PES, pages 1 —6, aug.
2008.

A. Faruqui, P. Fox-Penner, and R. Hledik. Smart grid strategy: Quantifying benefits.
Public Utilities Fortnightly, July 2009.

S. Ghosh, D. A. Tancu, D. Katz, D. T. Phan, and M. S. Squillante. Power generation
management under time-varying power and demand conditions. Proceedings of IEEE
Power Engineering Society General Meeting, 2011.

P. Hines and S. Blumsack. A centrality measure for electrical networks. In Hawaii
International Conference on System Sciences, Proceedings of the 41st Annual, page 185,
jan. 2008.

P. Hines, S. Blumsack, E. Cotilla Sanchez, and C. Barrows. The topological and electrical
structure of power grids. In System Sciences (HICSS), 2010 43rd Hawaii International
Conference on, pages 1 —10, jan. 2010.

Paul D.H. Hines, Benjamin OHara, Eduardo Cotilla-Sanchez, , and Christopher M.
Danforth. Cascading failures: Extreme properties of large blackouts in the electric grid.
2010.

Matthew O. Jackson. Social and Economic Networks. Princeton University Press, August
2008.

J. Lavaei and S.H. Low. Convexification of optimal power flow problem. In Communi-
cation, Control, and Computing (Allerton), 2010 48th Annual Allerton Conference on,
pages 223 —232, 29 2010-oct. 1 2010.

Adilson E. Motter and Ying-Cheng Lai. Cascade-based attacks on complex networks.
Phys. Rev. E, 66:065102, Dec 2002.

F. Saccomanno. Flectric power systems: analysis and control. IEEE Press series on
power engineering. IEEE Press, 2003.

http: //www.stanford.edu/~adalbert 14


http://www.stanford.edu/~adalbert

[SRCCMVO08] Ricard V. Solé, MartiRosas-Casals, Bernat Corominas-Murtra, and Sergi Valverde. Ro-

[VBS11]

[WS9g]

[WST10a]

[WST10b)]

[WST10c]

[WST10d]

bustness of the european power grids under intentional attack. Phys. Rev. E, 77:026102,
Feb 2008.

Stefania Vitali, Glattfelder James B., and Battiston Stefano. The network of global
corporate control. PLoS ONE, 6(10):€25995, 10 2011.

D. J. Watts and S. H. Strogatz. Collective dynamics of ’small-world’ networks. Nature,
393(6684):440-442, June 1998.

Zhifang Wang, A. Scaglione, and R.J. Thomas. Compressing electrical power grids. In
Smart Grid Communications (SmartGridComm), 2010 First IEEE International Con-
ference on, pages 13 —18, oct. 2010.

Zhifang Wang, A. Scaglione, and R.J. Thomas. Electrical centrality measures for electric
power grid vulnerability analysis. In Decision and Control (CDC), 2010 49th IEEE
Conference on, pages 5792 —5797, dec. 2010.

Zhifang Wang, A. Scaglione, and R.J. Thomas. Generating statistically correct random
topologies for testing smart grid communication and control networks. Smart Grid,
IEEE Transactions on, 1(1):28 -39, june 2010.

Zhifang Wang, A. Scaglione, and R.J. Thomas. The node degree distribution in power
grid and its topology robustness under random and selective node removals. In Commu-
nications Workshops (ICC), 2010 IEEE International Conference on, pages 1 —5, may
2010.

http://www.stanford.edu/~adalbert 15


http://www.stanford.edu/~adalbert

	Introduction
	Background and motivation
	Electric network theory
	Model of shock propagation on the grid
	Empirical framework
	Conclusions

