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Abstract

The power grid is of crucial importance to the modern economy and in recent years it has drawn

also the attention of researchers in the nascent field of complex network science. Most previous works

in this field have been descriptive and mainly concerned with highlighting the structure that power

grids share with other types of networked (e.g., small world). We propose and develop the first steps

of a prescriptive study that investigates the situation in which a continuous shock (either in demand

or supply) propagates on a power grid. We are interested obtaining a tractable, analytic expression

of the aggregate volatility resulted from the shock, yet preserving the characteristcs of an engineer-

ing network that obeys certain physical laws (i.e., Kirchhoff’s theorems). This framework can be

then used to set-up problems of economic interest in this context, such as an optimum investment

in network elements to achieve minimum disruptions due to a shock. Here we report on identifying

the physics-motivated interaction mechanisms between elements in the network. Preliminary results

indicate that under certain assumptions and simplifications certain quantities (power flow into a

node and likely an “investment“ cost associated with that node) may be expressed via a typical

network centrality measure - the Bonacich centrality (related to Google’s PageRank). Moreover, we

plan to use our framework to study empirically shocks on a power grid. For this we implemented

algorithms from the complex power networks literature to generate random test networks with real-

istic characteristics that may be tuned to highlight certain properties or results.

As instructed by Prof. Leskovec, I mention that the week during which the project was due, I

had an accident in which I have broken my right arm (which I use to write). This resulted in me

not being able to go through a part of the derivations and implementations that I proposed in the

milestone.

1 Introduction

The U.S. electric power generation and distribution network has been hailed as “the largest and most

complex machine in the world“ [Ami04] and the “20th century’s engineering innovation most beneficial

to our civilization“ [Ami11a]. It is a greatly complex network that extends over a vast geographical

area whose operation poses both technical (e.g., robustness under failure) and human-related (e.g.,

consumption behaviors) challenges. In recent years the concept of smart grid has received much atten-

tion as a way to reduce energy use and the associated environmental costs, and to increase efficiency

and reliability of power generation and delivery through better monitoring and control. In the Energy

Independence and Security Act of 2007 (Section 1301), it was stated that the Smart Grid should allow

for “increased use of digital information and controls to improve reliability, security, and efficiency of

the electric grid”, as well as “dynamic optimization of grid operations and resources, with full cyber-

security...” [Ami11b]. This and similar legislation in the U.S. and other countries [Ami11a] has been

adopted to allow a framework for investment in grid technologies that would counterbalance the steady

rise in demand for electricity (in the U.S., electricity amounted for 10% of total energy production in

1940, 25% 1970, and 40% in 2002; China’s electricity use is projected to double by 2020 [Ami11b]).

The smart grid of the 21st century is also expected to be more robust to outages and failures caused by

disturbances in supply or demand, which can cause significant financial and other losses (around $80

billion annually in the U.S., and $188 billion worldwide [Ami11b]). Moreover, cascading failures can

affect a large number of customers and cause significant economic disruptions (e.g., the August 2003

Northeastern blackout, with over 50 million customers affected and $6 billion in losses). Estimates
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[Ami11b] show that both financial and environmental benefits can be substantial - ∼$70 billion reduc-

tions in costs associated with blackouts and ∼18% reductions in GHG emissions yearly - for projected

investment costs of around $1.5 trillion.

In this context there has been a sustained effort by researchers to understand the large-scale

structure of this type of complex systems, especially for the grids in the U.S. and in Europe. The

several areas that have received particular attention in the complex systems literature include the

structure of the power network (especially whether the grid has small-world [WS98] or scale-free prop-

erties [CP05]) and the reliability and robustness of the grid under different type of attacks or failures

[AAN04, SRCCMV08, HOCS+10]. Earlier studies (e.g., [WS98], [CP05] or [AAN04]) abstract away

from the actual electrical properties of the network and use a simplified, connection-based topology, in

which power generators and distribution stations are nodes, and transmission lines are edges. Newer

work has addressed this shortcoming by incorporating into the network definition the some of the un-

derlying physical characteristics that govern the distribution of electricity [WST10d, WST10b, HB08].

It has been shown [WST10c] that the node degree distribution in real power networks does not follow

a power law (as in scale-free networks), but is the convolution of a geometric random variable with a

discrete random variable.

Traditional engineering literature on power grids focuses on solving (approximately or exactly in

some particular cases) optimization problems that make use of detailed physical characteristics and

couplings between parts of the system. Examples include the optimal power flow problem (OPF, which

calculates the optimum generation at buses in the power grid given engineering constraints and a

generation cost function) [GIK+11] or the transmission planning problem (which calculates the best

placement of generation given transmission constraints and costs) [ERG08]. On the other side, much of

the complex systems literature on the electric grid has focused on descriptive problems, as illustrated

above. The main thread in existing work has been to describe statistical properties of connectives,

electrical topology, and structural resilience to failure. We do not know of any attempts to model

or quantify the global (system-wide) risks and opportunities presented by the network structure with

respect to exogenous processes, in particular effects of operational decisions (e.g., infrastructure invest-

ments or renewables integration) or market-side events (e.g., demand or supply shocks). In our view this

is mainly because of barrier posed by modeling such highly-complex systems that obey specific physical

laws (e.g., Kirchhoff’s laws). In this study we propose to arrive at a description of demand-induced

processes on the grid that is complex enough as to account for the main physical characteristics of this

system, yet simple enough to allow tractability and more generalizable statements about the economic

functioning of a smart grid.

The rest of this paper is organized as follows. In Section 2 we review several practical applications

of interest in the context of the smart grid that motivate our work. In Section 4 we present relevant

elements of power network theory that we use in this paper to develop a simplified approximate model

of demand shocks propagating on an electrical topology and show how it may be applied to draw

conclusions about investment decisions that increase the reliability of the grid under demand shocks.

In Section 5 we describe the empirical framework we used to apply our model to real and simulated

power grids. We conclude in Section 6.

2 Background and motivation

Below we introduce several aspects of the electricity market that motivate our work. The discussion

is focused on the U.S., but the issues presented are generalizable to any other country with significant

grid penetration.
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Uncertain demand and supply. On the supply side renewable sources (wind, solar) have effectively

zero marginal cost of generation; however they are also intermittent - you cannot know in advance how

much wind power you will generate. On the demand side each user consumes an amount of energy

that is only revealed in real-time. Utilities need to carefully balance power dispatch under variable gen-

eration conditions according to their forecasts of generation and consumption, and within a dynamic

market to minimize costs of service [BRK+11]. The increased consumption monitoring capabilities of

the smart meters allows extracting patterns in user demand profiles that may lead to better market

segmentation for demand-response applications [ARS11]. Better matching of demand and supply also

has important environmental consequences, as utilities fire up polluting coal plants to meet real-time

demand that was not accurately forecast [FFPH09]. We are not aware of any studies (either in the

complex networks literature, or in the power engineering literature) that attempt to draw higher-level

conclusions about the interactions in such a technological system without resorting to solving fully-

specified engineering problems (e.g., [GIK+11, ERG08]).

Risks of power delivery failure. Cascading failure of service in power grids (i.e., blackouts) can

achieve massive scale, with millions of customers affected and billions of dollars in losses, such as the ones

in the Northeastern U.S. and Italy in 2003, or the one in Germany in 2006 [HOCS+10, Ami04]. Studies of

the connectivity topology of the electrical grid for the U.S. [WS98, AAN04, CP05] have shown that this

system resembles a small-world network, which is most vulnerable to failure of highly-connected nodes.

It has been shown that incorporating the electrical characteristics of the power network (e.g., admit-

tance matrix) into the analysis leads to large changes in node centrality [WST10d, WST10b, HBCSB10].

The few analytical models of cascades in complex networks have typically adopted a extremely “binary“

approach to node failure (i.e., a node can be either ”active” or “disabled” with no in-between states),

which makes it very hard to carry an analytical approach. Thus most complex network analyses of

blackouts, including very highly cited works [ML02] where the authors proposed a model of load redis-

tribution in case of electric bus failure, have been descriptive in nature.

Robust infrastructure investments. There has been much criticism that the level of infrastructure

spending in the U.S. is lacking and has not increased at par with the increase in energy demand [Ami04].

Some studies have argued that increased infrastructure spending (e.g., on capacity increase) will not

necessarily lead to better service reliability (or alternatively less vulnerability to failure) because of

inherent inefficiencies in the electric topology of the grid [WST10a]. Although the complex networks

framework is well suited to analyzing the factors that influence the system-wide behavior of large-scale,

interconnected systems, we haven’t been able to find any studies that analyze the financial effect of

operational decisions that influence network characteristics as to fit a planner’s objective. We would

like to study infrastructure investment decisions that contribute to the absorption and integration

of variable demand and supply, and that may increase the system robustness under various types of

failures.

3 Electric network theory

We first review several concepts relevant for electrical networks (following [Sac03, LL10]). We use this

exposure to motivate our proposed simplified model of interactions between components of the electrical

network.

Electric topology of the power grid

Consider an AC electric network. It is composed of N nodes, i.e., generation and load buses (“terminal

nodes“), or transmission buses (“internal nodes“), and L branches, i.e., the transmission lines. A special

node is the reference (ground) node of zero voltage; any branch that connects to that node is a shunt
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Figure 1: Nodes and branches in an electrical network. Currents follow Kirchhoff’s First Theorem. The relation-

ship between currents and voltages is given by Ohm’s Law. Source: [Sac03].

branch. The topological properties of the network may be summarized via the L×N line-node incidence

(or “connection“) matrix C (here l is a branch and s, t, and k are nodes):

C :


C(l, s) = +1

C(l, t) = −1

C(l, k) = 0, with k 6= s or t

Each node h is characterized by a (complex) voltage v̄h, while each transmission line l has an impedance

z(l) = r(l) + jx(l), with r(l) the resistance and x(l) the reactance, and an admittance y(l) = 1/z(l) =

g(l) + jb(l), where g(l) is the conductance, and b(l) is the susceptance. Then the branch voltages are

given by ū = CV̄, with V̄ = (v̄1, v̄2, . . . v̄N )T , and by Ohm’s Law the branch currents are given by

f̄ = diag(ȲL)ū = diag(ȲL)CV̄, (1)

with ȲL the L× 1 vector of (complex) line admittances.

Current flows and voltages follow (to a first approximation) Kirchhoff’s Current Law (KCL, arising

from to conservation of charge), and Kirchhoff’s Voltage Law (KVL, arising from conservation of

energy). For any two nodes h and k, we may consider the situation depicted in Figure 1 where a

current ῑh goes into node h, and a current ῑhk comes out of node k (a current ῑh0 goes into the ground).

Using Kirchhoff’s First (Current) and Second (Voltage) Theorems, one may express the two currents

as

ῑh0 = ȳh0v̄h and

ῑhk = ȳhk(v̄h − v̄k) (2)

This may be extended over all branches hk that go out of node h:

ῑh = ῑh0 +

N∑
k=1
k 6=h

ῑhk (3)

For the entire network this can be expressed succinctly as

Ī = ȲV̄, (4)
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where Ȳ is the admittance matrix and Ī the vector of externally injected currents. Then the network

admittance can be expressed as

Ȳ = CTdiag(ȲL)C, (5)

where the elements of the sparse matrix Ȳ are given by:

Ȳ :

{
Ȳ (h, h) = ȳh0 +

∑N
k=1
k 6=h

ȳhk

Ȳ (h, k) = −ȳhk, (k 6= h)

Power equations for the electric grid

Power flows along transmission lines from higher to lower voltages (in the direction of branch currents).

The complex voltage at node h can be written as v̄h = vhe
jαh , where αh is the phase difference between

voltage and current at steady state. Then it can be shown from Equations (3) and (2) that the complex

power P̄h = v̄hῑh = Ph + jQh injected from the external at node h can be expressed in terms of the

active (Ph) and reactive (Qh) components as follows:

Ph = v2hGhh + vh

N∑
k=1
k 6=h

vk(Ghkcosαhk +Bhksinαhk)

Qh = −v2hBhh + vh

N∑
k=1
k 6=h

vk(Ghksinαhk −Bhkcosαhk). (6)

If the network is predominately reactive (G ∼= 0) and the phase shifts α are generally small, so the

above expressions may simplify to:

Ph = vh

N∑
k=1
k 6=h

vkBhkαhk

Qh = −vh
N∑
k=1

vkBhk. (7)

As such, under the above assumption of zero transmission losses, the power entering node h coming

from node k can be expressed as:

Pkh = vhvkBhkαhk

Qkh = −v2h(Bh0 +Bhk) +Bhkvhvk. (8)

Note that the active power Ph depends on both electrical properties of the network (the branch suscep-

tances Bhk) and the phase angles αhk, whereas the reactive power Qh does not depend on the phase

angles.

From the first part of Equation (7) we may also express the phase angles as

α0 = TP, (9)

with P the vector of powers injected at each of the nodes, α0
h = αh−α0 the phase angle with respect to

the node 0 chosen as reference, and T the matrix defined by Thh =
∑

r Bhrvhvr and Thk = −Bhkvhvk.
Now if we let the power at node i vary bt δPi, the above Equation and Equation (8) imply for the flow

power between nodes h and k:

δPhk = B′kh(Thi − Tki)δPi ≡ ζihkδPi, (10)

where B′kh = Bkhvkvh.
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4 Model of shock propagation on the grid

In this Section we describe the simplifying assumptions that we make to arrive at a description of the

interactions between nodes in a power grid that is locally linear. We argue that if assuming small

perturbations from an initial steady state and operation below the capacity threshold for network

elements one may arrive at results similar to complex network theory treatments of other problems

that study the flow of other quantities over a network medium.

Simplified power flow model

Suppose we are interested in a situation where node voltages are fixed (e.g., have been set to optimum

operating values by grid operators) for a lossless network (G ∼= 0). The steady-state phase angles αhk
and node voltages vh may be obtained by e.g., solving an optimum power flow problem [GIK+11] or

an optimum transmission planning problem [ERG08]. Here we ask how surges in power either on the

demand or supply side propagate through this network operating at an engineering equilibrium point.

We start by noting that it is the active power that it is transmitted to the load nodes through the

electric network. Moreover, taking derivatives of the quantities in Equation (8) shows that the active

power is most sensitive to a change in the phase angles, whereas reactive power is mainly influenced

by changes in voltage magnitudes. Thus we may reasonably assume a situation where node voltages

are kept constant. In a simplified approach we consider the phase angles αhk as jointly characterizing

network electrical topology along with the line impedances Bhk and node voltages vh. As such, in

Equations (7 and 8) above (the active power part) we combine the branch-specific coefficients into

Wkh = vkBkhαkh and define Ŵkh = Wkh∑
kWkh

. Note that the matrix {Ŵ}kh is not symmetric because of

the vk term. Then the expression for the active power from Equation (7) becomes:

Pkh = PhŴkh, (11)

i.e., the power entering node k coming from node h is a fraction Ŵkh of the power entering through

node h.

Consider now the situation in Figure 2. There the superscripts s and d indicate, in that order,

generated power (”supply”) and consumed power (”demand”). We thus define the net power produced

at a node h as

∆Ph = P sh − P dh , (12)

with P dh the load at bus h and P sh the generation at bus h. Note that ∆Ph can be either positive (net

power generation) or negative (net power consumer). Depending on the sign of ∆Ph, nodes can be

either generators (∆Ph > 0), consumer loads (∆P < 0), or transmission nodes (∆Ph = 0).

Energy conservation requires that, for each node h, power flowing out of a node balances the power

flowing in and the (net) power produced (or consumed) at that node:

P outj = ∆Pj + P inj . (13)

Denoting Πj ≡ P inj we recall from Equation (11) that Πh =
∑

j P
out
j Ŵjh, and thus we may use Equation

(13) to write

Πh =
∑
j

Ŵjh(∆Pj + Πj)

=
∑
j

Ŵjh∆Pj +
∑
j

ŴjhΠj , (14)

which in vector form amounts to writing

Π = Ŵ∆P + ŴΠ. (15)
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Figure 2: Energy conservation at each node: net power flowing into any node h equals net power flowing out.

Solving the above equation for the case ∆Ph 6= 0 we arrive at an expression for the power flow entering

nodes in the network:

Π = (I− Ŵ)−1Ŵ∆P. (16)

When ∆Ph = 0 the above Equation (15) suggests:

Π = ŴΠ, (17)

i.e., for transmission nodes, the power flowing into each node is given by the entries of the eigenvector

corresponding to a unit eigenvalue of the steady-state weights matrix Ŵ. Note that power entering

each node in the network in Equation (16) is related to the Bonacich centrality of that node. This

result is similar to other conclusions about centrality in the complex networks literature, e.g., [VBS11],

which studies the flow of of “corporate control” over the global network of trans-national companies.

Here we however highlighted the physics behind this conclusion for the case of a power network.

Optimum power injection model

Now suppose, on the contrary, that we are interested in the response of a grid operator when faced

with an external event affecting the economic and engineering operational state of the network, e.g.,

the sudden loss of continuous amounts of power at some nodes. Here we consider a lossy line G > 0 in

the case of small phase angles αhk (sinαhk ∼= αhk and cosαhk ∼= 1) and ask what the best response of

the grid operator is, given external (market) conditions.

Recall the expression for the active power in Equation (6), and denote Hhk = Ghk + Bhkαhk. An

external agent acts on node h (operating at voltage vh) by drawing a current ιh, which amounts to a

power πh = ιhvh. Then we may write for the power injected at node h:

Ph = v2hGhh+ vh

N∑
k=1
k 6=h

vkHhk − ιhvh. (18)

We are interested in generating the minimum amount of power such that some financial measure

is optimized. The best response to the external action ιh is then linear in the voltages (we take

∂Ph/∂vh = 0):

2Ghh +
N∑
k=1
k 6=h

vkHhk − ιh = 0 (19)
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Then in vector form we may write (with γh = 1
2Ghh

)

v = ι− diag(γ)Hv, (20)

from which we may solve for v:

v = (I− diag(γ)H)−1 ι. (21)

This model is most closely related to [CBO11], where the authors formulate the optimal consumption

of a network agent in response to an externally-specified price signal and perfect knowledge of the

consumption levels of neighboring nodes in the network. The best response voltage at a given node is

related, as before, to the Bonacich centrality of that node.

Stochastic demand and supply and associated operational decisions

As future work we plan to investigate analytically how a shock in demand or supply propagates on a

network for which the simplified interaction mechanisms are as illustrated above. In the first setting

(simplified power flow model) we may explore several scenarios:

• Demand is fixed; we let supply be stochastic, i.e., P sh → P sh+ε, with some shock ε ∼ N(0, σ2). We

may then calculate how much of σ2 is present at some other node k in the network as power inflow.

Then we could define an optimal investment problem which associates a (linear, quadratic...) cost

with the perturbance at each node, then minimizes that cost;

• Supply is fixed; we let demand be stochastic similarly as before. In the current formulation it

seems that the two cases are equivalent when either is fixed. Perhaps some regularity conditions

set in that we need to be careful about, e.g., power flow sign changes may affect the weights Ŵhk

through the phase angles?

• Either supply or demand receives shocks at more than one node; Are the effects superposable, or

are there correlations terms arising due to network interactions?

• Let both supply and demand be variable. Study implications of “forecastability” of supply vs

demand (i.e., which one has smaller variance). That is, let some demand and supply shocks appear

on the network; is it better in terms of investment cost to know the demand more accurately (lower

variance), or is it more cost-effective to have more information about the supply?

In the second setting (best-response injection) we could similarly study a stochastic external action

ι ∼ N(0, σ2), and carry analyses as suggested above.

5 Empirical framework

As previously mentioned, we would like to be able to illustrate our model on a variety of power networks

that are both adjustable to fit our particular experiments, but at the same time retain the statistical

characteristics empirically observed in real grids. We first present measures of node centrality proposed

in the complex power grids literature that take into account some of the physical characteristics of the

underlying network [WST10b]. We then describe a method proposed in the literature [WST10b] for

generating random networks that follow the observed statistical properties of real power grids. We shall

use the random electric topologies to illustrate our economic model for electric networks of varying sizes

and other characteristics. This will enable us to perform simulations that would generalize some of the

conclusions of the model.
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Measures of electrical centrality

Using the admittance matrix and its correspondence to the usual graph Laplacian one can extend the

usual notions of centrality - betweenness, degree, closeness, or eigenvector (i.e., PageRank) - to the

electric grid. In [WST10b] several such measures are described in close correspondence to the same

quantities derived from unweighted graphs. As such, degree centrality of a vertex v, Cd(v) = deg(v)
n−1 =

L(v,v)
n−1 becomes the electrical degree centrality

CdY (v) =
||Y (v, v)||
n− 1

. (22)

Similarly, the eigenvector centrality (or Bonacich centrality [Jac08]) Ce(v) = 1
λmax

∑n
j=1A(v, j)xj be-

comes

Ce(v) = || 1

λmax

n∑
j=1

AY (v, j)xj ||,

with AY = −Y +D(Y ).

Another centrality measure that we are interested in is related to closeness centrality, which in a

non-weighted network is the mean geodesic distance between two nodes:

Cc(v) =
n− 1∑

t∈V nv dG(v, t)
. (23)

The geodesic distance dG above can be replaced by the “shortest electrical distance” between any ver-

tices v and t, dZ(v, t) = ||
∑

(i,j)∈E∩path(v→t) Zpr(i, j)||.

While the measures described above do incorporate certain aspects of the physics of a complex grid (that

is, the fact that transmission lines are heterogeneous in their intrinsic characteristics, summarized by

the complex impedance/admittance value), they actually fail to account for two fundamental physical

phenomena in power grids, namely:

• Physical power networks are directed in steady state [DY11], i.e., power flows in well-specified

directions along transmission lines. As such, the actual network is asymmetric (because of direct-

edness), which is not reflected in formulations in the literature.

• In physical grids, power doesn’t flow on shortest paths, or “shortest electrical paths”; rather,

it obeys Kirchhoff’s Laws 3. As such there are specific interactions between each node and its’

neighbors that are not captured in the simple formulations above.

Some of these concerns have been addressed to some extent in the complex power grids literature, e.g.,

in [DY11], where the authors have proposed a measure of link centrality based on the fraction of the

total current that flows through it from the source node to the sink node. There an approach based

on the graph-theoretic Min-Cut problem is proposed to calculate this centrality measure practically.

However we feel that our contribution will better address the above points as our treatment is built up

from basic principles.

Generation of random electric topologies

In order to apply our model in a variety of cases, we need to be able to simulate power grids that

are realistic in their statistical properties. As noted before, real power grids have been found to be

sparse networks that retain some of the characteristics of small-world neworks [WST10d]. In partic-

ular, real grids have better topological connectivity than small-world networks, as they are formed of

interconnected small-world “communities” [WST10a]. The node degree distribution X in a power grid
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follows a distribution that has a geometric part G (the long tail) and a discrete part D (that models

the irregularities that deviate from the geometric distribution) [WST10c]:

pX = pG ◦ pD, (24)

where the ◦ operator above indicates a convolution between the respective PMFs. The random variable

G is a truncated geometric with a threshold of kmax,

Pr(G = k) =
(1− p)kp∑kmax
i=0 (1− p)ip

, (25)

while the random variable D is discrete and can take a small number of values:

Pr(D = k) = pk, k = 1, 2, . . .K (26)

Electrical characteristics of transmission lines (admittances) may follow one of several types of

distributions, including clipped lognormal, lognormal, and generalized Pareto distributions. An original

random variable Y ∼ fY (y) that is “clipped“ by an exponential cutoff at Zmax results in the variable

X ∼ fX(x) =
Zmax

Zmax − x
fY

(
−Zmaxlog

(
1− x

Zmax

))
. (27)

The lognormal distribution is given by:

logn(x|µ, σ) =
1

xσ
√

2π
e

−logx−µ
2σ2 . (28)

The observations above are used in [WST10c] to formulate a model of a realistic electrical network

which we have implemented for this study. The main steps of this model are:

1. Generate several regular lattices (much like in the Watts-Strogatz small-world model), but with

a geometric distribution of the local neighborhood. These lattices are disconnected initially.

2. For each lattice, rewire several links such that there is non-zero correlation between rewired links.

[WST10c] uses a Markov process to ensure this property.

3. Generate several long-range lattice links to connect the previously-generated regular lattices

4. Generate impedances as described above and assign them to the different link types such that

local links have lowest impedance, and lattice connections have largest impedance. This accounts

for the fact that transmission line impedance depends almost linearly with physical line length.

Real power grids data

For this study we use several public datasets created by the IEEE that have been described in the liter-

ature and are available online1. These test-case networks of 14, 30, 57, 118, and 300 nodes (i.e., either

generators or distributor buses) are weighted graphs in which edges weights correspond to transmission

line impedances. The nodes have many electrical attributes that are relevant for thees power systems.

For example, the IEEE-300 system contains 300 nodes and 409 edges. These systems are referenced in

many power grid network analysis studies (e.g., [WST10b, HB08]). The schematic of the IEEE-30 bus

network is presented in Figure 3.

The literature references several other datasets, which unfortunately are either not detailed enough for

our analysis (i.e., do not contain physical characteristics of the network), or prove very hard to obtain

or are not in the public domain. Examples from the former category include the dataset on the power

grid in the Western U.S. that is used in, e.g., [WS98]. In the latter category we may list the NYISO-2935

dataset (of the New York power grid) and commercial databases such as the one maintained by Platts,

Inc.2.
1http://www.ee.washington.edu/research/pstca/
2http://www.platts.com/
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Single line diagram of the IEEE 30-bus test system 
 
 

 

 
 
 
 
 

 

IEEE−30 Bus System
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Figure 3: A real power network on 30 nodes (the IEEE-30 test case). Left: electric schematic; Right: node-link

topological diagram.

Empirical analysis

We implemented the algorithm for generating random electric topologies as described above. One

such random topology is presented in Figure 4 for a network with N = 300 buses and approximately

m = 420 links (right panel). In the same figure (left panel) we present the a real dataset (the IEEE-300

test case) of a network with roughly the same number of nodes and links. We compute the three

different centrality measures for the two cases (real and random networks) to highlight the difference

between the topological and electrical characteristics as defined above. For the random case, we took

the average of NTrials = 100 test electrical networks generated at random. To generate the values of

the line impedances for the random case we used the clipped lognormal distribution discussed above.

The results of this exercise are presented in Figure 4. We observe that while the degree centralities

(topological and electrical) are relatively well matched for both the real and random networks, there are

large differences in the eigenvector and closeness centralities results for the topological and electrical

cases for both the random and real networks.

Another experiment that we performed was to study the behavior of distribution of the normalized

centrality indices with increasing network size. We generated networks of sizes N between 14 and 1000

nodes, in which the size of a small-world sub-network scaled as
√
N . For each value of N we retained

the average statistics over NTrials = 10 test electrical networks generated at random. We observe that

the closeness centrality is consistently higher for small network sizes, whereas the other two measures

slowly, but consistently decrease in value with increased number of nodes.

6 Conclusions

We have introduced and motivated an application of complex network theory for studying exogenous

processes on a power grid. We studied physical interactions between nodes on a power grid, and

show that under certain simplifying assumptions power entering a given node may be related to the

Bonacich centrality of that node. Also we show that under a scenario where the voltage at each node

is the decision variable, that quantity may also be expressed using a Bonacich centrality term. We
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Figure 4: Example power networks. Left: real power network on 300 nodes (the IEEE-300 test case); Right:

simulated power network on 300 nodes using the algorithm in [WST10c].

Figure 5: Centrality measures for real and random networks of N = 300 nodes and about m = 420 links (doubly

logarithmic plots). Left: degree centrality; Middle: eigenvector centrality; Left: closeness centrality.
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Figure 6: Centrality measures statistics vs random network size. Each column color-codes the distribution of the

centrality measure (in steps of 0.05 percentiles between 0 and 1) for a given network size. Top: degree centrality;

Middle: eigenvector centrality; Bottom: closeness centrality. Values are logarithmic.

thus set up a preliminary framework that may be used to investigate externally-induced shocks and

associated financial aspects.

Acknowledgments

This material has resulted from discussions with Profs. Dan Iancu and Kostas Bimpikis (Stanford

Graduate School of Business). I acknowledge also useful discussions with Prof. Ram Rajagopal on

power grid analysis and modeling. I am grateful for their guidance and insights.

References
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