Geography on the web

Lars Backstrom
Facebook
Introduction

• Information is becoming increasingly geographic as it becomes easier to geotag all forms of data, and many devices have embedded GPS.
• What sorts of questions can we answer with this geographic data?
 – Query logs
 – Friendship
• Data is noisy. Is there enough signal? How can we extract it.
• Simple methods aren’t quite good enough, we need a model of the data.
Outline

• Query Logs
 – Probabilistic, generative model of queries
 – Results and evaluation
 – Adding temporal information to the model
 – Modeling more complex geographic query patterns
 – Extracting the most distinctive queries from a location

• Facebook GEO-Data
 – Understanding data
 • Where do people live?
 • How far away do their friends live?
 • How are the two related?
 – Location Algorithm
 • Can we predict locations from friends’ locations?
 • Using the network to improve beyond prediction based on located friends’ locations.

• Conclusions
Outline

• Query Logs
 – Probabilistic, generative model of queries
 – Results and evaluation
 – Adding temporal information to the model
 – Modeling more complex geographic query patterns
 – Extracting the most distinctive queries from a location

• Facebook GEO-Data
 – Understanding data
 • Where do people live?
 • How far away do their friends live?
 • How are the two related?
 – Location Algorithm
 • Can we predict locations from friends’ locations?
 • Using the network to improve beyond prediction based on located friends’ locations.

• Conclusions
Query Logs

• Many topics have geographic focus
 – Sports, airlines, utility companies, attractions

• Our goal is to identify and characterize these topics
 – Find the center of geographic focus for a topic
 – Determine if a topic is tightly concentrated or spread diffusely geographically

• Use Yahoo! query logs to do this
 – Geolocation of queries based on IP address
Red Sox
Grand Canyon National Park
Probabilistic Model

• Consider some query term t
 — e.g. ‘red sox’
• For each location x, a query coming from x has probability p_x of containing t
• Our basic model focuses on term with a center “hot-spot” cell z.
 — Probability highest at z
 — p_x is a decreasing function of $\|x-z\|$
• We pick a simple family of functions:
 — A query coming from x at a distance d from the term’s center has probability $p_x = C \cdot d^{-\alpha}$
 — Ranges from non-local ($\alpha = 0$) to extremely local (large α)
Algorithm

- Maximum likelihood approach allows us to evaluate a choice of center, C and α
- Algorithm finds parameters which maximize likelihood
 - For a given center, likelihood is unimodal and search algorithms find optimal C and α
 - Consider all centers on a course mesh, optimize C and α for each center
 - Find best center, consider finer mesh
Bell South
\(\alpha = 1.257 \)
Red Sox
\[\alpha = 0.931 \]
Grand Canyon National Park

$\alpha = 0.690$
Comcast.com
\[\alpha = 0.24 \]
More Results (newspapers)

<table>
<thead>
<tr>
<th>Newspaper</th>
<th>α</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Wall Street Journal</td>
<td>0.11327</td>
</tr>
<tr>
<td>USA Today</td>
<td>0.263173</td>
</tr>
<tr>
<td>The New York Times</td>
<td>0.304889</td>
</tr>
<tr>
<td>New York Post</td>
<td>0.459145</td>
</tr>
<tr>
<td>The Daily News</td>
<td>0.601810</td>
</tr>
<tr>
<td>Washington Post</td>
<td>0.719161</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Chicago Sun Times</td>
<td>1.165482</td>
</tr>
<tr>
<td>The Boston Globe</td>
<td>1.171179</td>
</tr>
<tr>
<td>The Arizona Republic</td>
<td>1.284957</td>
</tr>
<tr>
<td>Dallas Morning News</td>
<td>1.286526</td>
</tr>
<tr>
<td>Houston Chronicle</td>
<td>1.289576</td>
</tr>
<tr>
<td>Star Tribune (Minneapolis)</td>
<td>1.337356</td>
</tr>
</tbody>
</table>

- Term centers land correctly
- Small α indicates nationwide appeal
- Large α indicates local paper
More Results

<table>
<thead>
<tr>
<th>School</th>
<th>(\alpha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Harvard</td>
<td>0.386832</td>
</tr>
<tr>
<td>Caltech</td>
<td>0.423631</td>
</tr>
<tr>
<td>Columbia</td>
<td>0.441880</td>
</tr>
<tr>
<td>MIT</td>
<td>0.457628</td>
</tr>
<tr>
<td>Princeton</td>
<td>0.497590</td>
</tr>
<tr>
<td>Yale</td>
<td>0.514267</td>
</tr>
<tr>
<td>Cornell</td>
<td>0.558996</td>
</tr>
<tr>
<td>Stanford</td>
<td>0.627069</td>
</tr>
<tr>
<td>U. Penn</td>
<td>0.729556</td>
</tr>
<tr>
<td>Duke</td>
<td>0.741114</td>
</tr>
<tr>
<td>U. Chicago</td>
<td>1.097012</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>City</th>
<th>(\alpha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>New York</td>
<td>0.396527</td>
</tr>
<tr>
<td>Chicago</td>
<td>0.528589</td>
</tr>
<tr>
<td>Phoenix</td>
<td>0.551841</td>
</tr>
<tr>
<td>Dallas</td>
<td>0.588299</td>
</tr>
<tr>
<td>Houston</td>
<td>0.608562</td>
</tr>
<tr>
<td>Los Angeles</td>
<td>0.615746</td>
</tr>
<tr>
<td>San Antonio</td>
<td>0.763223</td>
</tr>
<tr>
<td>Philadelphia</td>
<td>0.783850</td>
</tr>
<tr>
<td>Detroit</td>
<td>0.786158</td>
</tr>
<tr>
<td>San Jose</td>
<td>0.850962</td>
</tr>
</tbody>
</table>
Evaluation

• Consider terms with natural ‘correct’ centers
 – Baseball teams
 – Large US Cities

• We compare with three other ways to find center
 – Center of gravity
 – Median
 – Most likely grid cell
 • Compute baseline rate for all queries
 • Compute likelihood of observations at each 0.1x0.1 grid cell

• Pick cell with lowest likelihood of being from baseline model
Baseball Teams and Cities

- Our algorithm outperforms mean and median
- Simpler likelihood method does better on baseball teams
 - Our model must fit all nationwide data
 - Makes it less exact for short distances
Temporal Extension

• We observe that the locality of some queries changes over time
 – Query centers may move
 – Query dispersion may change (usually becoming less local)
• We examine a sequence of 24 hour time slices, offset at one hour from each other
 – 24 hours gives us enough data
 – Mitigates diurnal variation, as each slice contains all 24 hours
Hurricane Dean

- Biggest hurricane of 2007
- Computed optimal parameters for each time slice
- Added smoothing term
 - Cost of moving from A to B in consecutive time slices
 $\gamma |A-B|^2$
- Center tracks hurricane, alpha decreases as storm hits nationwide news
Multiple Centers

• Not all queries fit the one-center model
 – ‘Washington’ may mean the city of the state
 – ‘Cardinals’ might mean the football team, the baseball team, or the bird
 – Airlines have multiple hubs

• We extend our algorithm to locate multiple centers, each with its own C and α
 – Locations use the highest probability from any center
 – To optimize:
 • Start with K random centers, optimize with 1-center algorithm
 • Assign each point to the center giving it highest probability
 • Re-optimize each center for only the points assigned to it
Spheres of influence
Spheres of Influence

- Each baseball team assigned a color
- A team with N queries in a cell gets N^c votes for its color
- Map generated by taking weighted average of colors
Distinctive Queries

• For each term and location
 – Find baseline rate p of term over entire map
 – Location has t total queries, s of them with term
 – Probability given baseline rate is: $p^s(1-p)^{t-s}$

• For each location, we find the highest deviation from the baseline rate, as measured by the baseline probability
Outline

• Query Logs
 – Probabilistic, generative model of queries
 – Results and evaluation
 – Adding temporal information to the model
 – Modeling more complex geographic query patterns
 – Extracting the most distinctive queries from a location

• Facebook GEO-Data
 – Understanding data
 • Where do people live?
 • How far away do their friends live?
 • How are the two related?
 – Location Algorithm
 • Can we predict locations from friends’ locations?
 • Using the network to improve beyond prediction based on located friends’ locations.

• Conclusions
Geo-properties of Friendship

• Using Facebook data, we explore the geographic properties of social networks
 – How well do link distance distributions match existing theories?
 – How does it depend on where people live (urban vs. rural)?

• Expanding beyond user-provided addresses
 – Can we use what we’ve learned about geography to predict unknown location from sparse geo-data
 – How can network data improve location data
Related Work - Routing

• Long history of link between friendship and geography
 - Milgram experiment (1967) showed short paths between people
 - Watts and Strogatz (1998) showed theoretical models of how this might work
 - Kleinberg (1999) showed intuitive geographic properties could lead to small world
 • Lattice network with random links distributed by distance
 - Liben-Nowell et al. (2005) showed some of these properties on LiveJournal network
US FB Population

• We have two ways to determine location
 – From IP Address
 • Lots of inaccurate, bad data
 – From user provided address
 • Also lots of inaccurate, bad data
 • But, more precise when correct

• Using user provided data, we can map FB usage
 – 3 Million US users provided this data
 – More interesting when compared to US Population
 • Surprisingly midwest is highest
User Data

- User provided addresses mapped to lat, long using TIGER/Line data from US Census bureau
 - Only addresses that can be mapped to real street addresses used
Population Density

- Consider each 0.01x0.01 degree (~0.36 sq. miles) region in the US
 - How many FB users are there in each region?
 - Distribution shows two distinct behaviors on log-log plot
 - Rural Region, slow falloff
 - Urban Region, fast falloff
 - Transition at 560K^2 / FB user or about 5,600^2 / person
Population Density

- We divide the US into three regions
 - Low, medium and high density
 - 1/3 of users in each
- For each person, we count people in annulus of width 0.1 mile and radius r
 - High density regions have more people nearby
 - Curves converge at 50 miles
 - High density curve goes down as we transition urban to rural
Where our friends live

- Mostly nearby, but a significant number far away too
 - 20% within 2 miles
 - 50% within 12 miles
 - 20% over 100 miles
- Population density plays a role

<table>
<thead>
<tr>
<th>Density Level</th>
<th>20%</th>
<th>50%</th>
<th>80%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low Density</td>
<td>3.5</td>
<td>14.8</td>
<td>83.6</td>
</tr>
<tr>
<td>Medium Density</td>
<td>2.1</td>
<td>12.7</td>
<td>97.1</td>
</tr>
<tr>
<td>High Density</td>
<td>1.6</td>
<td>11.9</td>
<td>137.1</td>
</tr>
</tbody>
</table>

Cumulative Friendship by Distance

- High Density
- Medium Density
- Low Density

![Cumulative Friendship by Distance](image)
Probability of Friendship

- What is the probability that you know someone x miles away?
 - Count the number you know x miles away
 - Count the total number of people x miles away
 - Divide and aggregate over all users
 - Tail of curve is roughly x^{-1}
- Breaking down by density
 - Higher density means lower probabilities at lower distances
 - Larger denominator
 - At ~100 miles all curves converge
 - Beyond 100 miles, urban users have higher probability
 - More cosmopolitan?
Using Friends to Geolocate

• For some people (about 3%) we have precise user-provided locations

• How well can we infer the locations of the rest based on friendship?
 – We observed the probability of friendship as a function of distance (about x^{-1})
Location Inference Problem

• Problem Statement:
 – Input: user u, with friends \{v_1,v_2,\ldots,v_k\} where \(v_i\) is located at location \(p_i\)
 – Output: an estimate for the location of u

• Friendship probabilities suggest generative model
 – Assume that users u and v are friends with probability \(f(\text{distance}(u,v))\)
 – \(f(\cdot)\) learned from observations of users with known geography – about \(x^{-1}\)

• Pick location to maximize likelihood
Pinpointing Location

- Given \(f(.) \) can easily compute likelihood of location \(L \)
 - \(\prod_i f(\text{distance}(L, p_i)) \times \prod_{\sim i} 1 - f(\text{distance}(L, p_i)) \)
 - First term pulls towards friends
 - Second term pulls towards sparsely populated regions
 - \(\{i\} \) is the set of friends,
 \(\{\sim i\} \) is the set of non-friends

- Naively this is expensive
 - Many choices for \(L \)
 - \(\{\sim i\} \) is huge
Pinpointing Location

• Simple optimizations make this practical
 – Product over all non-friends can be pre-computed one time
 – Optima is (almost) always colocated with a friend

• Algorithm
 – For all L, precompute $\Pi_{users} 1-f(distance(L,p_i))$
 – For each friend, compute likelihood at friend’s location
 – Pick maximum

![Likelihood Surface](image)
Prediction Performance

- Performance evaluated at x miles
 - What fraction of users are placed within x miles of their true location
 - True location comes from user-provided addresses

- Performance of IP derived locations
 - 57% within 25 miles
 - 76% within 100 miles
 - Performance on new users/recently updated addresses not much better
 - Measure for people with new addresses in last 90 days
 - Suggests errors come from IP-Location, not people moving
Prediction Performance

• A simple network-based baseline comes from placing a person at the location of a random friend
 – Does better than IP at short distances
 (IP resolution is rarely better than city-level)
 – Much worse overall
• Our algorithm is better at shorter distances
 – 61% (vs. 57%) at 25 mi.
• It is worse at greater distances
 – 71% (vs 76%) at 100 mi.
Prediction Performance

- We predict more accurately for people with more friends
 - Median error with 5 located friends is 16 miles
 - With 16 friends, it is 6.8 miles
- Error on users with 16 or more located friends is better at all distances
 - 69% (vs. 57%) at 25 miles
 - 78% (vs 76%) at 100 miles
Hybrid Algorithm

- Results suggest hybrid algorithm
 - Less than 5 friends with user-provided location, use IP-Location
 - Otherwise use friend-based location
 - Strict improvement over IP on this metric
Using the Network Further

• Use prediction for u to improve prediction for u’s friends
 – Ideally, maximize global likelihood
 • Hard problem, can’t be easily solved
 – Repeat our algorithm multiple times
 • Run once to get first approximations
 • Subsequently, optimize based on known and approximated locations
Testing Iterative Method

• To test, remove locations from $\frac{1}{2}$ of users
• Predict locations for those users based on other $\frac{1}{2}$
• Performance curve shows improvement
 – Second pass significantly better
 – Third pass shows little improvement

![Performance Curve for Leave-Many-Out Evaluation](image)
Facebook Checkins

- Most popular places to checkin
 - Stadium
 - Airport
 - Fisherman’s wharf
Outline

• Query Logs
 – Probabilistic, generative model of queries
 – Results and evaluation
 – Adding temporal information to the model
 – Modeling more complex geographic query patterns
 – Extracting the most distinctive queries from a location
• Facebook GEO-Data
 – Understanding data
 • Where do people live?
 • How far away do their friends live?
 • How are the two related?
 – Location Algorithm
 • Can we predict locations from friends’ locations?
 • Using the network to improve beyond prediction based on located friends’ locations.
• Conclusions
Conclusions

- Large-scale study of social geography confirms some observations made on small scales
 - Most friends live within about 10 miles
 - People in urban areas have more long-range ties
- Also, lends further credence to geographic explanations of social routing
 - Kleinberg model links to $O(x)$ nodes at distance x with prob. $1/x^2$ each
 - Cumulative distribution of friends is $C \cdot \log(x)$
Conclusions

• Using known locations from just a few people, we can bootstrap approximations for the rest
 – Allows us to serve better local content to users

• Future work
 – Use edge creation times (more weight on new edges)
 – Explore different meanings of distance
 • Is the social distance of NY-LA more than NY-Rapid City, SD?
Questions