PageRank, HITS and Link Prediction
Web: How to organize it?

- How to organize/navigate it?

- First try:
 - Web directories
 - Yahoo,
 - DMOZ,
 - LookSmart

![Web directories example](image-url)
Information Retrieval

- SEARCH!

- Find relevant docs in a small and trusted set:
 - Newspaper articles
 - Patents, etc.

- Two traditional problems:
 - Synonymy: buy – purchase, sick – ill
 - Polysemy: jaguar
The Index Size Wars

Does more documents mean better results?
What is “best” answer to query “Stanford”?

- **Anchor Text**: I go to [Stanford](http://cs224w.stanford.edu) where I study

What about query “newspaper”?

- No single right answer

Scarcity (IR) vs. abundance (Web) of information

- **Web**: Many sources of information. Who to “trust”

Trick:

- Pages that actually know about newspapers might all be pointing to many newspapers

Ranking!
Goal (back to the newspaper example):
- Don’t just find newspapers. Find “experts” – people who link in a coordinated way to good newspapers

Idea: Links as votes
- Page is more important if it has more links
 - In-coming links? Out-going links?

Hubs and Authorities
- Quality as an expert (hub):
 - Total sum of votes of pages pointed to
- Quality as an content (authority):
 - Total sum of votes of experts
- Principle of repeated improvement
Counting in-links: Authority

- SJ Merc News: 2 votes
- Wall St. Journal: 2 votes
- New York Times: 4 votes
- USA Today: 3 votes
- Facebook: 1 vote
- Yahoo!: 3 votes
- Amazon: 3 votes
Expert quality: Hub

![Diagram showing network analysis with nodes and votes]

- S.I. Merc News: 2 votes
- Wall St. Journal: 2 votes
- New York Times: 4 votes
- USA Today: 3 votes
- Facebook: 1 vote
- Yahoo!: 3 votes
- Amazon: 3 votes
Reweighting
Hubs and Authorities

- Each page i has 2 kinds of scores:
 - Hub score: h_i
 - Authority score: a_i

- HITS algorithm:
 - Initialize: $a_i = h_i = 1$
 - Then keep iterating:
 - Authority: $a_j = \sum_{i \to j} h_i$
 - Hub: $h_i = \sum_{i \to j} a_j$
 - Normalize: $\sum a_i = 1, \sum h_i = 1$
Hubs and Authorities

- HITS converges to a single stable point
- Slightly change the notation:
 - Vector \(a = (a_1, \ldots, a_n) \), \(h = (h_1, \ldots, h_n) \)
 - Adjacency matrix (\(n \times n \)): \(M_{ij} = 1 \) if \(i \to j \)
- Then:
 \[
 h_i = \sum_{j \to i} a_j \iff h_i = \sum_j M_{ij} a_j
 \]
- So: \(h = Ma \)
- And likewise: \(a = M^T h \)
Algorithm in new notation:

- Set: $a = h = 1^n$
- Repeat:
 - $h = Ma$, $a = M^T h$
 - Normalize

Then: $a = M^T (Ma)$

Thus, in 2k steps:

$$a = (M^T M)^k a$$
$$h = (MM^T)^k h$$

a is being updated (in 2 steps):

$$M^T (Ma) = (M^T M) a$$

h is updated (in 2 steps):

$$M (M^T h) = (MM^T) h$$

Repeated matrix powering
Definition:
- Let $Ax = \lambda x$ for some scalar λ, vector x and matrix A
- Then x is an eigenvector, and λ is its eigenvalue

Fact:
- If A is symmetric ($A_{ij} = A_{ji}$) (in our case M^TM and MM^T are symmetric)
- Then A has n orthogonal unit eigenvectors $w_1 \ldots w_n$ that form a basis (coordinate system) with eigenvalues $\lambda_1 \ldots \lambda_n$ ($|\lambda_i| \geq |\lambda_{i+1}|$)
How to think about Ax?

- Write x in coordinate system $w_1 \ldots w_n$

 $$x = \sum_i \alpha_i w_i$$

 - x has coordinates $(\alpha_1, \ldots, \alpha_n)$

- Suppose: $\lambda_1 \ldots \lambda_n$ ($|\lambda_1| \geq |\lambda_2| \geq \ldots \geq |\lambda_n|$)

- $A^kx = (\lambda_1^k, \lambda_2^k, \ldots, \lambda_n^k)$

- As $k \to \infty$, if we normalize

 $$A^kx \to \lambda_1 \alpha_1 w_1$$

 (all other coordinates $\to 0$)

- So authority a is eigenvector of M^TM associated with largest eigenvalue λ_1
PageRank: The “flow” model

- A vote from an important page is worth more
- A page is important if it is pointed to by other important pages
- Define a “rank” \(r_j \) for node \(j \)

\[
r_j \propto \sum_{i \rightarrow j} \frac{r_i}{\text{outdegree of } i}
\]

Flow equations:

\[
\begin{align*}
y &= y/2 + a/2 \\
a &= y/2 + m \\
m &= a/2
\end{align*}
\]
PageRank: Matrix formulation

- **Stochastic adjacency matrix** M
 - Let page j has d_j out-links
 - If $j \rightarrow i$, then $M_{ij} = 1/d_j$ else $M_{ij} = 0$
 - M is a column stochastic matrix
 - Columns sum to 1

- **Rank vector** r: vector with 1 entry per page
 - r_i is the importance score of page i
 - $|r| = 1$

- The flow equations can be written
 $$r = Mr$$
Imagine a random web surfer:

- At any time \(t \), surfer is on some page \(u \)
- At time \(t+1 \), the surfer follows an out-link from \(u \) uniformly at random
- Ends up on some page \(v \) linked from \(u \)
- Process repeats indefinitely

Let:

- \(p(t) \) ... vector whose \(i^{th} \) coordinate is the prob. that the surfer is at page \(i \) at time \(t \)
- \(p(t) \) is a probability distribution over pages
The Stationary Distribution

- Where is the surfer at time $t+1$?
 - Follows a link uniformly at random
 \[p(t+1) = Mp(t) \]
- Suppose the random walk reaches a state
 \[p(t+1) = Mp(t) = p(t) \]
 - then $p(t)$ is **stationary distribution** of a random walk
- **Our rank vector** r satisfies $r = Mr$
 - So it is a stationary distribution for the random surfer
PageRank: How to solve?

- **Power Iteration:**
 - Set $r_i = 1$
 - $r_j = \sum_i r_i/d_i$
 - And iterate

- **Example:**

<table>
<thead>
<tr>
<th></th>
<th>y</th>
<th>a</th>
<th>m</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>1/2</td>
<td>1/2</td>
<td>0</td>
</tr>
<tr>
<td>a</td>
<td>1/2</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>m</td>
<td>0</td>
<td>1/2</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>y</th>
<th>a</th>
<th>m</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>1</td>
<td>1</td>
<td>5/4</td>
</tr>
<tr>
<td>a</td>
<td>1</td>
<td>3/2</td>
<td>1</td>
</tr>
<tr>
<td>m</td>
<td>1</td>
<td>1/2</td>
<td>3/4</td>
</tr>
</tbody>
</table>
Some pages are “dead ends” (have no out-links)
 - Such pages cause importance to leak out

Spider traps (all out links are within the group)
 - Eventually spider traps absorb all importance
Power Iteration:

- Set $r_i = 1$
- $r_j = \sum_i r_i / d_i$
- And iterate

Example:

<table>
<thead>
<tr>
<th></th>
<th>y</th>
<th>a</th>
<th>m</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>½</td>
<td>½</td>
<td>0</td>
</tr>
<tr>
<td>a</td>
<td>½</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>m</td>
<td>0</td>
<td>½</td>
<td>0</td>
</tr>
</tbody>
</table>

\[
\begin{array}{ccc}
 y & a & m \\
 1 & 1 & 3/4 & 5/8 & 0 \\
 1 & 1/2 & 1/2 & 3/8 & 0 \\
 1 & 1/2 & 1/4 & 1/4 & 0 \\
\end{array}
\]
Power Iteration:

- Set $r_i = 1$
- $r_j = \sum_i r_i / d_i$
- And iterate

Example:

<table>
<thead>
<tr>
<th></th>
<th>y</th>
<th>a</th>
<th>m</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>$\frac{1}{2}$</td>
<td>$\frac{1}{2}$</td>
<td>0</td>
</tr>
<tr>
<td>a</td>
<td>$\frac{1}{2}$</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>m</td>
<td>0</td>
<td>$\frac{1}{2}$</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>y</th>
<th>1</th>
<th>1</th>
<th>$\frac{3}{4}$</th>
<th>$\frac{5}{8}$</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>1</td>
<td>$\frac{1}{2}$</td>
<td>$\frac{1}{2}$</td>
<td>$\frac{3}{8}$</td>
<td>...</td>
</tr>
<tr>
<td>m</td>
<td>1</td>
<td>$\frac{3}{2}$</td>
<td>$\frac{7}{4}$</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>
Solution: Random jumps

- At each step, random surfer has two options:
 - With probability $1-\beta$, follow a link at random
 - With probability β, jump to some page uniformly at random

- PageRank equation:
 $$ r_j = (1-\beta) \sum_{i \rightarrow j} r_i/d_i + \beta $$

d_i ... outdegree of node i
PageRank & eigenvectors

- PageRank as a principal eigenvector
 \[r = Mr \iff r_j = \sum_i r_i/d_i \]

- But we really want:
 \[r_j = (1 - \beta) \sum_i r_i/d_i + \beta \sum_i r_i \]

- Define:
 \[M'_{ij} = (1 - \beta) M_{ij} + \beta 1/n \]

- Then: \(r = M'r \)

- What is \(\beta \)?
 - In practice \(\beta = 0.15 \) (5 links and jump)

\(d_i \) ... outdegree of node i
Example
Goal: Evaluate pages not just by popularity but by how close they are to the topic

Teleporting can go to:
- Any page with equal probability
 - (we used this so far)
- A topic-specific set of “relevant” pages
 - Topic-specific (personalized) PageRank

\[
M'_{ij} = (1-\beta) M_{ij} + \beta c
\]

(c...teleport vector)
- **Graphs and web search:**
 - Ranks nodes by “importance”

- **Personalized PageRank:**
 - Ranks proximity of nodes to the teleport nodes \(c \)

- **Proximity on graphs:**
 - **Q:** What is most related conference to ICDM?
 - **Random Walks with Restarts**
 - Teleport back: \(c = (0 \ldots 0, 1, 0 \ldots 0) \)
Application: TrustRank

- **Link Farms:** networks of millions of pages design to focus PageRank on a few undeserving webpages

- To minimize their influence use a teleport set of trusted webpages
 - E.g., homepages of universities
Link prediction task:

- Given $G[t_0, t_0']$ a graph on edges up to time t_0', output a ranked list L of links (not in $G[t_0, t_0']$) that are predicted to appear in $G[t_1, t_1']$.

Evaluation:

- $n = |E_{\text{new}}|$: # new edges that appear during the test period $[t_1, t_1']$.
- Take top n elements of L and count correct edges.
Link prediction via node distance

- **Predict links a evolving collaboration network**

| | training period | | | | Core |
|----|-----------------|---|-------------|---|
| | authors | papers | collaborations | authors | $|E_{old}|$ | $|E_{new}|$
astro-ph	5343	5816	41852	1561	6178	5751
cond-mat	5469	6700	19881	1253	1899	1150
gr-qc	2122	3287	5724	486	519	400
hep-ph	5414	10254	47806	1790	6654	3294
hep-th	5241	9498	15842	1438	2311	1576

- **Core**: Since network data is very sparse
 - Consider only nodes with in-degree and out-degree of at least 3
Link prediction via node distance

- Rank potential links \((x, y)\) based on:

<table>
<thead>
<tr>
<th>Method</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Graph distance</td>
<td>((\text{negated}) \text{ length of shortest path between } x \text{ and } y)</td>
</tr>
<tr>
<td>Common neighbors</td>
<td>(</td>
</tr>
<tr>
<td>Jaccard’s coefficient</td>
<td>(</td>
</tr>
<tr>
<td>Adamic/Adar</td>
<td>(\sum_{z \in \Gamma(x) \cap \Gamma(y)} \frac{1}{\log</td>
</tr>
<tr>
<td>Preferential attachment</td>
<td>(</td>
</tr>
<tr>
<td>Katz(\beta)</td>
<td>(\sum_{\ell=1}^{\infty} \beta^\ell \cdot</td>
</tr>
</tbody>
</table>

where \(\text{paths}_{x,y}^{(\ell)} := \{\text{paths of length exactly } \ell \text{ from } x \text{ to } y\}\)

- Weighted: \(\text{paths}_{x,y}^{(1)} := \text{number of collaborations between } x, y\).
- Unweighted: \(\text{paths}_{x,y}^{(1)} := 1 \text{ iff } x \text{ and } y \text{ collaborate.}\)

- Hitting time
 - Stationary-normed: \(-H_{x,y}\)
 - Stationary-normed: \(-H_{x,y} \cdot \pi_y\)

- Commute time
 - Standard: \(-H_{x,y} + H_{y,x}\)
 - Stationary-normed: \(-H_{x,y} \cdot \pi_y + H_{y,x} \cdot \pi_x\)

where

- \(H_{x,y} := \text{expected time for random walk from } x \text{ to reach } y\)
- \(\pi_y := \text{stationary-distribution weight of } y\)

(proportion of time the random walk is at node \(y\))
Link prediction via node distance

$$\sum_{z \in \Gamma(x) \cap \Gamma(y)} \frac{1}{\log |\Gamma(z)|}$$
- Recommend a list of possible friends
- **Supervised machine learning setting:**
 - **Training example:**
 - For every node s have a list of nodes she will create links to $\{g_1, \ldots, g_k\}$
 - **Problem:**
 - Learn a model that will for a given node s rank nodes $\{g_1, \ldots, g_k\}$ higher than other nodes in the network
- **How to combine node/edge attributes and network structure?**
 - Let’s learn how to bias random walks!
Let s be the center node
Let $f_w(u, v)$ be a function that assigns a strength to each edge:

$$a_{uv} = f_w(u, v) = \exp(-w \Psi_{uv})$$

- Ψ_{uv} is a feature vector
 - Features of node u
 - Features of node v
 - Features of edge (u,v)

- w is the parameter vector we want to learn

Do a random walk from s where transitions are according to edge strengths

How to learn $f_w(u, v)$?
Personalized PageRank

- Random walk transition matrix:
 \[Q'_{uv} = \begin{cases}
 \frac{a_{uv}}{\sum_w a_{uw}} & \text{if } (u, v) \in E, \\
 0 & \text{otherwise}
 \end{cases} \]

- PageRank transition matrix:
 \[Q_{ij} = (1 - \alpha)Q'_{ij} + \alpha \mathbf{1}(j = s) \]
 - with prob. \(\alpha \) jump back to \(s \)

- Compute PageRank vector: \(p = p^T Q \)
- Rank nodes by \(p_u \)
The Optimization Problem

- Each node \(u \) has a score \(p_u \)
- Destination nodes \(D = \{v_1, \ldots, v_K\} \)
- No-link nodes \(L = \{\text{the rest}\} \)

What do we want?

\[
\min_w F(w) = ||w||^2
\]

such that

\[
\forall d \in D, l \in L : p_l < p_d
\]

- Hard constraints, make them soft
Want to minimize:

$$\min_w F(w) = \|w\|^2 + \lambda \sum_{ld} h(p_l - p_d)$$

- **Loss:** \(h(x) = 0\) if \(x < 0\), \(x^2\) else

How to minimize \(F\)?

- \(p_l\) and \(p_d\) depend on \(w\):
 - Given \(w\) assign edge weights \(a_{uv} = f_w(u,v)\)
 - Using transition matrix \(Q = [a_{uv}]\) compute PageRank scores \(p_u\)
 - Want to set \(w\) such that \(p_l < p_d\)
How to minimize F?

Take the derivative!

\[
\frac{\partial F}{\partial w} = 2w + \sum_{l,d} \frac{\partial h(p_l - p_d)}{\partial w} = 2w + \sum_{l,d} \frac{\partial h(\delta_{ld})}{\partial \delta_{ld}} \left(\frac{\partial p_l}{\partial w} - \frac{\partial p_d}{\partial w} \right)
\]

We know:

\[p = p^T Q \] i.e. \[p_u = \sum_j p_j Q_{ju} \]

So:

\[
\frac{\partial p_u}{\partial w} = \sum_j Q_{ju} \frac{\partial p_j}{\partial w} + p_j \frac{\partial Q_{ju}}{\partial w}
\]

Looks like the PageRank equation!
Iceland Facebook network
- 174,000 nodes (55% of population)
- Avg. degree 168
- Avg. person added 26 new friends/month

For every node s:
- Positive examples:
 - D={ new friendships of s in Nov ‘09 }
- Negative examples:
 - L={ other nodes s did not create new links to }
Node and Edge features for learning:

- Node:
 - Age
 - Gender
 - Degree

- Edge:
 - Age of an edge
 - Communication,
 - Profile visits
 - Co-tagged photos

Baselines:

- Decision trees and logistic regression:
 - Above features + 10 network features (PageRank, common friends)

Evaluation:

- AUC and precision at Top20
Facebook: predicting your future friends

<table>
<thead>
<tr>
<th>Learning Method</th>
<th>ROC area</th>
<th>Prec@Top20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random Walk with Restart</td>
<td>0.81725</td>
<td>6.80</td>
</tr>
<tr>
<td>Degree</td>
<td>0.58535</td>
<td>3.25</td>
</tr>
<tr>
<td>DT: Node features</td>
<td>0.59248</td>
<td>2.38</td>
</tr>
<tr>
<td>DT: Path features</td>
<td>0.62836</td>
<td>2.46</td>
</tr>
<tr>
<td>DT: All features</td>
<td>0.72986</td>
<td>5.34</td>
</tr>
<tr>
<td>LR: Node features</td>
<td>0.54134</td>
<td>1.38</td>
</tr>
<tr>
<td>LR: Path features</td>
<td>0.51418</td>
<td>0.74</td>
</tr>
<tr>
<td>LR: All features</td>
<td>0.81681</td>
<td>7.52</td>
</tr>
<tr>
<td>SRW: one edge type</td>
<td>0.82502</td>
<td>6.87</td>
</tr>
<tr>
<td>SRW: multiple edge types</td>
<td>0.82799</td>
<td>7.57</td>
</tr>
</tbody>
</table>
Results:
- 2.3X improvement over previous FB-PYMK system

How to scale to FB size?
- FB network:
 - >500 million people, >65 billion edges
 - 40 machines, each 72GB of RAM (total 2.8TB)
 - System makes 8.6 million suggests per second