Network community detection:
-- Trawling
-- Spectral graph partitioning
-- Overlapping communities
Announcement: HW3-Competition

- **Task:**
 - Find coalitions in signed networks

- **Incentives:**
 - European chocolates!
 - Fame
 - Up to 10% extra credit

- **Due:**
 - Friday midnight
 - No late days!
Today: 3 methods
(3) Trawling: Community signatures that can be efficiently extracted
(4) Spectral graph partitioning: Laplacian matrix, 2nd eigenvector
(5) Overlapping communities: Clique percolation method
Method 3: Trawling

- Searching for small communities in Web graph
- (1) What is the signature of a community/discussion in a Web graph

Use this to define topics:
What the same people on the left talk about on the right

Intuition: many people all talking about the same things
(2) A more well-defined problem:
Enumerate complete bipartite subgraphs $K_{s,t}$
- Where $K_{s,t} = s$ nodes where each links to the same t other nodes
The Plan: (1), (2) and (3)

- **Two points:**
 - (1) The signature of a community/discussion
 - (2) Complete bipartite subgraph $K_{s,t}$
 - $K_{s,t} =$ graph on s nodes, each links to the same t other nodes

- **Plan:**
 - (A) From (2) get back to (1):
 - Via: Any dense enough graph contains a smaller $K_{s,t}$ as a subgraph
 - (B) How do we solve (2) in a giant graph?
 - What similar problems have been solved on big non-graph data?
 - (3) Frequent itemset enumeration [Agrawal-Srikant ‘99]
Frequent itemset enumeration

- **Marketbasket analysis:**
 - What items are bought together in a store?

- **Setting:**
 - Universe \(U \) of \(n \) items
 - \(m \) subsets of \(U \): \(S_1, S_2, \ldots, S_m \subseteq U \)
 - \(S_i \) is a set of items one person bought
 - Frequency threshold \(f \)

- **Goal:**
 - Find all subsets \(T \) s.t. \(T \subseteq S_i \) of \(\geq f \) sets \(S_i \)
 - (items in \(T \) were bought together \(\geq f \) times)
Frequent itemsets: Example

- Example:
 - Universe of items:
 - $U=\{1,2,3,4,5\}$
 - Itemsets:
 - $S_1=\{1,3,5\}$, $S_2=\{2,3,4\}$, $S_3=\{2,4,5\}$, $S_4=\{3,4,5\}$, $S_5=\{1,3,4,5\}$, $S_6=\{2,3,4,5\}$
 - Minimum support:
 - $f=3$
- Algorithm: Build up the lists
 - Insight: for a frequent set of size k, all its subsets are also frequent
Example: Apriori algorithm

- $U = \{1,2,3,4,5\}$, $f = 3$
- $S_1 = \{1,3,5\}$, $S_2 = \{2,3,4\}$, $S_3 = \{2,4,5\}$, $S_4 = \{3,4,5\}$, $S_5 = \{1,3,4,5\}$, $S_6 = \{2,3,4,5\}$
Frequent itemset: Apriori algorithm

- For $i = 1, \ldots, k$
 - Find all frequent sets of size i by composing sets of size $i-1$ that differ in 1 element

- Open question:
 - Efficiently find only maximal frequent sets
Claim: (3) (itemsets) solves (2) (bipartite graphs)

How?
- View each node i as a set S_i of nodes i points to
- $K_{s,t} = a set \gamma of size t that occurs in \gamma sets S_i$
- Looking for $K_{s,t} \rightarrow set of frequency threshold to \gamma and look at layer t – all frequent sets of size t
From $K_{s,t}$ to Communities

- (2) \Rightarrow (1): Informally, every dense enough graph G contains a bipartite $K_{s,t}$ subgraph where s and t depend on size (# of nodes) and density (avg. degree) of G [Kovan-Sos-Turan ‘53]

- Theorem: Let $G=(X,Y,E)$, $|X|=|Y|=n$ with avg. degree: $\overline{d} = s^{1/t} n^{1-1/t} + t$

then G contains $K_{s,t}$ as a subgraph

[Will not prove it here. See online slides]
For the proof we will need the following fact

- Recall: \(\binom{a}{b} = \frac{a(a-1)...(a-b+1)}{b!} \)
- Let \(f(x) = x(x-1)(x-2)\cdots(x-k) \)
 Once \(x \geq k \), \(f(x) \) curves upward (convex)

Suppose a setting:

- \(g(y) \) is convex
- Want to minimize \(\sum_{i=1}^{m} g(x_i) \)
- where \(\sum_{i=1}^{m} x_i = x \)
- To minimize \(\sum_{i=1}^{m} g(x_i) \) make each \(x_i = x/n \)
- Node i, degree d_i and neighbor set S_i

- Put node i in buckets for all size t subsets of its neighbors

Potential right-hand sides of $K_{s,t}$ (i.e., all size t subsets of S_i)
Nodes and buckets

- Note: As soon as \(s \) nodes appear in a bucket we have a \(K_{s,t} \)

- How many buckets node \(i \) contributes?
 - \(d_i \) ... degree of node \(i \)

- What is the total size of all buckets?

\[
\sum_{i=1}^{\bar{d}} \binom{d_i}{t} \geq \sum_{t=1}^{\bar{d}} \binom{\bar{d}}{t} = m \left(\binom{\bar{d}}{t} \right)
\]
So, the total height of all buckets is...

\[m \left(\frac{\bar{n}}{t} \right) > m \left(\frac{\bar{n} - t}{t!} \right)^t = m \frac{n^t}{t^t} = m^t \frac{1}{t!} \]

Plug in:

\[\bar{d} = s^{1/t} n^{1-1/t} + t \]
And we are done!

- We have: Total height of all buckets \(\geq \frac{n^t s}{t!} \)
- How many buckets are there? \(\binom{n}{t} \leq \frac{n^t}{t!} \)
- What is the average height of buckets?

\[
\geq \frac{n^t s}{t!} \frac{t!}{n^t} = s
\]

So, avg. bucket height \(\geq s \)

- So by pigeonhole principle, there must be at least one bucket with more than \(s \) nodes in it.
Method 3: Trawling — Summary

- Theoretical result:
 - Complete bipartite subgraphs $K_{s,t}$ are embedded in larger dense enough graphs (i.e., the communities)
 - i.e., bipartite subgraphs as signatures of communities

- Algorithmic result:
 - Frequent itemset extraction and dynamic programming
 - SCALABLE!!!
Method 4: Graph partitioning

- Undirected graph $G(V,E)$:

- Bi-partitioning task:
 - Divide vertices into two disjoint groups (A,B)

- Questions:
 - How can we define a “good” partition of G?
 - How can we efficiently identify such a partition?
Graph partitioning

- What makes a good partition?
 - Maximize the number of within-group connections
 - Minimize the number of between-group connections
Express partitioning objectives as a function of the “edge cut” of the partition

Cut: Set of edges with only one vertex in a group: $\text{cut}(A,B) = \sum_{i \in A, j \in B} w_{ij}$

A graph is shown with two sets A and B, and the edge cut is calculated as 2.
Graph Cut Criterion

- **Criterion:** Minimum-cut
 - Minimise weight of connections between groups
 \[
 \min_{A,B} \text{cut}(A,B)
 \]

- **Degenerate case:**
 - “Optimal cut”
 - Minimum cut

- **Problem:**
 - Only considers external cluster connections
 - Does not consider internal cluster connectivity
Graph Cut Criteria

- **Criterion: Normalized-cut** [Shi-Malik, ’97]
 - Connectivity between groups relative to the density of each group

 \[Ncut(A, B) = \frac{cut(A, B)}{vol(A)} + \frac{cut(A, B)}{vol(B)} \]

 \(Vol(A) \): The total weight of the edges originating from group A.

- **Why use this criterion?**
 - Produces more balanced partitions

- **How do we efficiently find a good partition?**

- **Problem: Computing optimal cut is NP-hard**
Spectral Graph Partitioning

- A: adjacency matrix of undirected G
 - $A_{ij} = 1$ if (i,j) is an edge, else 0
- x is a vector in \mathbb{R}^n with components (x_1, \ldots, x_n)
 - just a label/value of each node of G
- What is the meaning of Ax?

$$
\begin{bmatrix}
a_{11} & \cdots & a_{1n} \\
\vdots & \ddots & \vdots \\
a_{n1} & \cdots & a_{nn}
\end{bmatrix}
\begin{bmatrix}
x_1 \\
\vdots \\
x_n
\end{bmatrix}
=
\begin{bmatrix}
y_1 \\
\vdots \\
y_n
\end{bmatrix}
$$

- Entry y_j is a sum of labels x_i of neighbors of j
What is the meaning of Ax?

- j^{th} coordinate of Ax:
 - Sum of the x-values of neighbors of j
 - Make this a new value at node j

- Spectral Graph Theory:
 - Analyze the “spectrum” of matrix representing G
 - Spectrum: Eigenvectors of a graph, ordered by the magnitude (strength) of their corresponding eigenvalues: $\Lambda = \{\lambda_1, \lambda_2, ..., \lambda_n\}$
 $$\lambda_1 \leq \lambda_2 \leq ... \leq \lambda_n$$
Example: d-regular graph

- Suppose all nodes in G have degree \(d \) and G is connected.
- What are some eigenvalues/vectors of G?

\[Ax = \lambda x \]

What is \(\lambda \)? What \(x \)?

\[\mathbf{x} = (1, 1, \ldots, 1) \]

\[\mathbf{A} \cdot \mathbf{x} = (d, d, \ldots, d) \]

\[\Rightarrow \quad \lambda = d \]
Example: Graph on 2 components

- What if G is not connected?
 - Say G has 2 components, each d-regular
- What are some eigenvectors?
 - $x = \text{Put all 1s on } A \text{ and 0s on } B \text{ or vice versa}$

 $$
 x^1 = (0, 0, 0, \ldots, 0, 1, 1, 1, 1) \\
 A x^1 = (0, 0, 0, d, d, \ldots) \\
 x'' = (1, \ldots, 1, 0, \ldots, 0) \\
 A x'' = (d, \ldots, d, 0, \ldots, 0) $
 $$

- $2 \lim \lambda_1 - \lambda_2 \approx 0$
Matrix Representations

- **Adjacency matrix** (A):
 - $n \times n$ matrix
 - $A = [a_{ij}]$, $a_{ij} = 1$ if edge between node i and j

- **Important properties**:
 - Symmetric matrix
 - Eigenvectors are real and orthogonal
- **Degree matrix (D):**
 - $n \times n$ diagonal matrix
 - $D = [d_{ii}]$, $d_{ii} =$ degree of node i
- Laplacian matrix \((L)\):
 - \(n \times n\) symmetric matrix
 - Diagram of a graph with nodes labeled 1 to 6

- What is trivial eigenvector/eigenvalue?
 - \(Lx = \lambda x\)
 - \(x = (1, 1, 1, 1, 1, 1)\)
 - \(\lambda = 0\)

- Important properties:
 - Eigenvalues are non-negative real numbers
 - Eigenvectors are real and orthogonal

\[
L = D - A
\]
\(\lambda_2 \) as optimization problem

- For symmetric matrix \(M \):

\[
\lambda_2 = \min_x \frac{x^T M x}{x^T x} = x^T M x
\]

- What is the meaning of \(\min_x x^T L x \) on \(G \)?

\[
x^T L x = \sum_{(i,j) \in E} (x_i - x_j)^2
\]

\[
x^T L x = \sum_{i,j=1}^{m} L_{ij} \cdot x_i \cdot x_j = \sum_{i,j=1}^{m} (D_{ij} - A_{ij}) \cdot x_i \cdot x_j
\]
What else do we know about x?

- x is unit vector: $\sum x_i^2 = 1$
- x is orthogonal to 1st eigenvector $(1, ..., 1)$ thus: $\sum x_i \cdot 1 = \sum x_i = 0$

Then:

$$\lambda_2 = \min_{\text{All labelings of nodes so that } \sum x_i = 0} \frac{\sum (x_i - x_j)^2}{\sum x_i^2}$$
Find Optimal Cut [Fiedler’73]

- Express partition (A,B) as a vector

\[x_i = \begin{cases}
+1 & \text{if } i \in A \\
-1 & \text{if } i \in B
\end{cases} \]

- We can minimize the cut of the partition by finding a non-trivial vector \(x \) that minimizes:

\[\min f(x) = \sum_{(i,j) \in E} (x_i - x_j)^2 \]
The minimum value is given by the 2nd smallest eigenvalue λ_2 of the Laplacian matrix L.

The optimal solution for x is given by the corresponding eigenvector λ_2, referred as the Fiedler vector.

$$f(x) = \sum_{(i,j) \in E} (x_i - x_j)^2 = x^T L x$$
So far...

- How to define a “good” partition of a graph?
 - Minimise a given graph cut criterion
- How to efficiently identify such a partition?
 - Approximate using information provided by the eigenvalues and eigenvectors of a graph
- Spectral Clustering
Three basic stages:

1. Pre-processing
 - Construct a matrix representation of the graph
2. Decomposition
 - Compute eigenvalues and eigenvectors of the matrix
 - Map each point to a lower-dimensional representation based on one or more eigenvectors
3. Grouping
 - Assign points to two or more clusters, based on the new representation
Spectral Partitioning Algorithm

- Pre-processing:
 - Build Laplacian matrix L of the graph

- Decomposition:
 - Find eigenvalues λ and eigenvectors x of the matrix L
 - Map vertices to corresponding components of λ_2

Pre-processing:

Build Laplacian matrix L of the graph

Decomposition:

Find eigenvalues λ and eigenvectors x of the matrix L

Map vertices to corresponding components of λ_2
Spectral Partitioning (continued)

- Grouping:
 - Sort components of reduced 1-dimensional vector
 - Identify clusters by splitting the sorted vector in two

- How to choose a splitting point?
 - Naïve approaches:
 - Split at 0, mean or median value
 - More expensive approaches:
 - Attempt to minimise normalized cut criterion in 1-dimension

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>-0.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>-0.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>-0.6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cluster A: Positive points
Cluster B: Negative points

Split at 0:

A

B
Example: Spectral partitioning
How do we partition a graph into k clusters?

Two basic approaches:

- **Recursive bi-partitioning** [Hagen et al., ’92]
 - Recursively apply bi-partitioning algorithm in a hierarchical divisive manner
 - Disadvantages: Inefficient, unstable

- **Cluster multiple eigenvectors** [Shi-Malik, ’00]
 - Build a reduced space from multiple eigenvectors
 - Commonly used in recent papers
 - A preferable approach...
k-Eigenvector Clustering

- **k-eigenvector Algorithm** [Ng et al.,’01]
 - **Pre-processing:**
 - Construct the scaled adjacency matrix A':

 $$A' = D^{-1/2} AD^{-1/2}$$
 - **Decomposition:**
 - Find the eigenvalues and eigenvectors of A'
 - Build embedded space from the eigenvectors corresponding to the k largest eigenvalues
 - **Grouping:**
 - Apply k-means to reduced $n \times k$ space to get k clusters
Why use multiple eigenvectors?

- Approximates the optimal cut [Shi-Malik, ’00]
 - Can be used to approximate the optimal k-way normalized cut
- Emphasizes cohesive clusters
 - Increases the unevenness in the distribution of the data
 - Associations between similar points are amplified, associations between dissimilar points are attenuated
 - The data begins to “approximate a clustering”
- Well-separated space
 - Transforms data to a new “embedded space”, consisting of k orthogonal basis vectors
- NB: Multiple eigenvectors prevent instability due to information loss
How to select k?

- **Eigengap:**
 - The difference between two consecutive eigenvalues
 - Most stable clustering is generally given by the value \(k \) that maximises eigengap:
 \[
 \Delta_k = |\lambda_k - \lambda_{k-1}|
 \]
- **Example:**

![Graph showing eigengap and eigenvalues](image)

\[\max \Delta_k = |\lambda_2 - \lambda_1|\]

\(\Rightarrow \text{Choose } k=2 \)
Many other partitioning methods

- METIS:
 - Heuristic but works really well in practice
 - http://glaros.dtc.umn.edu/gkhome/views/metis

- Graclus:
 - Based on kernel k-means

- Cluto:
 - http://glaros.dtc.umn.edu/gkhome/views/cluto/

- Clique percorlation method:
 - For finding overlapping clusters
 - http://angel.elte.hu/cfinder/
Overlapping communities

- Non-overlapping vs. overlapping communities