
Understanding Software Development Through Networks

Christopher Roach
Apple, Inc.

19333 Vallco Parkway, Building A
Cupertino, CA 95014

croach@apple.com

ABSTRACT
Software engineering, being a relatively new field, has strug-
gled to find ways of gauging the success/failure of develop-
ment projects. The ability to determine which developers
are most crucial to the success of a project, which areas in
the project contain the most risk, etc. has remained elu-
sive thus far. Metrics such as SLOC (Source Lines of Code)
continues to be used to determine the efficacy of individ-
ual developers on a project despite many well-documented
deficiencies. In this work, I propose a new way to look
at software development using network science. I use net-
works to to explain and understand the dynamics of the
software development process. In this paper I examine sev-
eral open-source software projects and detail one large open-
source software development project—the Python program-
ming language. I begin the analysis with a description of the
basic characteristics of the networks used in this project. I
follow with the main contribution of this work which is to
examine the importance of the developer within their orga-
nization based on their centrality measures in networks such
as degree, betweenness, and closeness.

1. INTRODUCTION
The discipline of software engineering has been around for
over 40 years; the first formal mention of the term can be
traced back to a 1968 NATO publication [1] whose main pur-
pose was to provoke thoughtful discussion on the looming
“software crisis” of the time. Ever since the establishment of
the software engineering discipline, the need for proper eval-
uation tools has been pursued. In market-driven economies
where the performance of employees is directly linked to the
success of companies, managers are required to maintain em-
ployee satisfaction while keeping up to market demands. In
the case of software development, managers should have the
ability to identify valuable developers so that they can be
rewarded as well as the ones performing poorly so that they
can be trained, or in the worst case, replaced.

Over forty years have passed since static, individual-based

metrics such as SLOC count were first used and yet the
use of these metrics to evaluate individual developers’ worth
within an organization still pervades the industry. However,
software development projects are no longer small with few
developers; most are complex, involving sometimes hundreds
of developers and millions of lines of code. Despite the fact
that it is now common knowledge that traditional metrics
are poor indicators of a developer’s value in today’s world,
they can still be found in every corner of the industry [3].
In this study, I argue that individual-based, static statistics
such as SLOC count, and other similar size count metrics,
are poor indicators of a developer’s overall worth within their
organization. The major source of problems with these tra-
ditional metrics lies within their focus on the individual to
the point of excluding the surrounding environment in which
the individual does his work. I argue that a network-centric
approach to measuring a developer’s importance provides a
much more realistic means to evaluate individual developers
since it takes into account the effect the organization has
on the individual developer’s productivity and the effect the
individual has on the organization in return.

The remainder of this report is organized as follows: In Sec-
tion 2 I quickly discuss the traditional methods used in soft-
ware development to evaluate developers; I also review the
literature on both the use of network science to study soft-
ware development and on some of the alternatives that have
been prescribed to remedy the known issues with traditional
metrics. Section 3 will argue for a network-centric approach
because it captures: the importance of a developer to the
cohesion of the team, the role of the developer in the main-
tenance of a stable development group, and the knowledge
held by a developer and the effect of his departure to the
group as a whole. I follow in this section with our argument
for using network-centric approaches. I finish the section
with a description of the network measurements used in this
paper. Section 4 describes the details of this study and jus-
tifies the use of the Python open-source project as well as
the results of using network-centric approaches to evaluate
developers. Finally, in Section 5, I discuss areas for future
work and give some concluding remarks.

2. RELATED WORKS
2.1 Evaluating Software Developers
One of the common problems software development man-
agers face in their daily activities relates to the process of
evaluating developers (programmers, testers, etc.). While
it would be relatively easy to quantify the amount of work

done by a developer, it is quite complicated to qualify the
same work. Anyone familiar with software development un-
derstands that some solutions to problems may be harder to
code than others. Hence the amount of work produced may
not reflect the effort a developer has put into the process.

There have been many approaches used to evaluate software
developers:

Source Lines of Code: SLOC is likely to have been the
first metric to evaluate developers. In a process of
software development the main product is a program
(a piece of software). Thus it is natural to think that
developers could be evaluated by the number of lines
of code they contribute to the process. Clearly this is
not a good approach as the number of lines does not
imply quality, and worse, the complexity of the lines
of code produced is disregarded in simple counts.

Number of Commits: It is common for companies to keep
track of the number of modifications a developer makes
to the project. The idea is that more prolific developers
tend to make more modifications (commits). However
this is highly questionable, since not all commits have
the same importance.

Number of Issues Found: This measure is very similar
to the number of commits, but closely related to is-
sues of bugs found in the development. Similarly to
the cases above, this is not a good indication because
different bugs have different importance. In fact, the
location (file) where the bug is found is also important.

Hours worked (extra hours): Many companies evaluate
developers by their level of dedication to the project.
The number of hours worked on a particular project
is often used as an indicator of dedication. Number of
hours is a good indicator but in isolation provide little
information about the effectiveness of the developer

Innovations Introduced by the Developer: Companies
today encourage developers to introduce new ideas and
even reward them for introducing ideas and projects.
To our knowledge this has not been formally been used
as an evaluation mechanism because very few job de-
scriptions formally require it.

Because of problems present in the approaches above, man-
agers generally resort to less precise evaluation mechanisms
such as meetings to discuss the worth of each developer from
their point of view—a common approach during the evalua-
tion cycle is to have managers discuss each person individu-
ally with some or all of the criteria above being considered.
While these approaches are useful and bring to the table
the important perceptions of managers, the whole process
is generally unfocused due to the lack of a precise reliable
metric to drive the discussion.

2.2 Development Trackers
The literature also has many examples of software tools
aimed at helping track the process of software development
as well as the developers working on the project. Some of

the common examples of these softwares include SeeSoft,
CVSScan and Chronia.

SeeSoft [4] is essentially a versioning tool for visualizing soft-
ware development at the source-code line level. Modifica-
tions in the code (lines) can be associated with any statis-
tic of interest such as: most-recently changed, least-recently
changed, number of changes, etc. Although not proposed
for evaluation of developers it could be easily adapted to be
used to track the number of lines changed by developers and
hence automate metrics such as SLOC.

CVSScan [5] is an approach similar to SeeSoft except that
CVSScan is based on a single source code visualization. A
program evaluator could easily see the changes performed by
a programmer. The focus on one source file provide a finer-
grain analysis but it hinders the evaluator’s ability to see
programmer’s skill across many projects or source codes—
his worth at a macro level.

Finally, Chronia [6] is a program to track ownership of files
based on the amount of modifications made by the develop-
ers. The idea is that the developer will become the owner
of the file when he contributes more to that file than others.
Chronia then creates a ownership map that can be analyzed
by managers/evaluators. Since this covers many files, it is a
reasonable indicator of the importance/performance of a de-
veloper but it lacks the ability to see this from a macro-level.
In addition, developers who work on a code fixing important
parts of it may never get ownership of the file leading the
evaluators to have an unfavorable view of them.

2.3 Network analysis of software development
From the descriptions in the previous section one factor
should be observed: the current approaches rely on num-
bers that depend solely on the individual. As new advances
in both software development practices and hardware have
been made, the size and complexity associated with the de-
velopment of software has continued to grow. One could
argue that any software of interest must be developed by a
team of engineers, and it is not uncommon to see team sizes
in the hundreds. As software development becomes increas-
ingly more team-oriented so too must the methods we use to
measure the individual developers. Traditional metrics are
quite simple and typically observe the individual while ig-
noring the team as a whole. Network measures, on the other
hand, take into account the individual’s position within the
network of developers, and, as a result, can paint a much
more accurate picture of each individual’s worth within that
organization.

There have been studies in the past that have used net-
work measures to examine the software development pro-
cess. The first, conducted by researchers at Notre Dame
University [7], examined the entire Free/Libre/Open Source
Software (FLOSS) community as a single network of de-
velopers connected by their active participation in common
projects. The main goal of this study was to determine if the
network of FLOSS developers showed the same characteris-
tics of other communication networks that had been found
in previous studies on real networks [8, 9]. They did, in
fact, find that the FLOSS community does follow a power-
law distribution and that the community seems to grow, not

as a random network, but rather as a preferentially attached
network.

The second study, performed at Syracuse University [10],
looked at the internal structure of several projects in the
FLOSS community to determine if they followed the widely
held belief that FLOSS projects tend to be chaotic and de-
centralized. The common meme being that FLOSS software
is constructed in a“bazaar”style—with little to no real plan-
ning and lots of people pitching in where needed—whereas
proprietary software is built more like a“cathedral”—ceremonious
and carefully thought out with rigid designs and processes.
In this study, a network was constructed for each software
project by linking individual participants to one another if
they had participated in any interaction on a common issue
through the project’s issue tracking software. The study
found that the centrality measures across the 120 differ-
ent FLOSS projects tended to follow a Gaussian distribu-
tion. This suggests that the conventional idea that FLOSS
projects are highly decentralized and chaotic—like that of
the atmosphere of a “bazaar”—is not entirely correct. In
fact, the FLOSS projects showed a broad scope of social
structures ranging from highly centralized to thoroughly de-
coupled. It was also found that a negative correlation exists
between the size of the project and the centrality of that
project. Therefore, as the projects grow in size, they also
tend to grow in entropy as well, becoming more chaotic and
decentralized as membership in them increases. This study
seemed to prove that neither depiction of FLOSS software—
“cathedral” or “bazaar”—was an accurate representation of
all FLOSS projects and that, instead, open-source software
projects are wildly varied in how each is developed.

3. GENERAL CONCEPTS
3.1 Shortcomings in Traditional Metrics
I have described in earlier sections many metrics that are
used in industry to evaluate software engineers. Despite the
many attempts, the problem of correctly identifying talent
(and consequently identifying under-performers) still chal-
lenges managers. Such identification process allow compa-
nies to reward developers according to their contribution to
the company. Unfortunately, the state-of-the-art of metrics
in industry rely on measures that are isolated from the con-
text in which they are applied. For instance, the common
SLOC measurement does not take into consideration factors
like: difficulty of the code being worked on, quality of the
code generated (i.e. n lines of code are not always equal
to n lines of code), importance of that source code to the
entire project. Due to this lack of metric, managers gen-
erally resort to reviews, meetings, interviews to understand
the importance of a developer in the entire context of the
company.

It should also be highlighted that individual metrics are very
susceptible to distortion since each individual can easily in-
flate his numbers: if one is counting lines of code, the de-
veloper could easily produce more lines of code with the
same amount of effort. The area of social networks has seen
a similar problem. After the advent of sites such as Face-
book, MySpace and Twitter, users quickly tried to add more
“friends” to their list in an attempt to become more impor-
tant in those social networks. Adding friends is something
over which each user has direct control. However, we now

know that the number of connections in a social network is
not quite as important as the type of connection (who are
your friends). Works inspired by sociology [11, 12] have de-
scribed that the importance of an individual relates to his
centrality in the network, so being a hub (large number of
connections) does not always imply being important. On
the context of websites, Google has become a power-house
search engine when they proposed an algorithm that looks
beyond the number of connections a website has with their
PageRank algorithm [13].

In this paper I argue that Network Science [14] can be used
to model interactions in a software development company;
one can create a social network of developers and use this
network to measure the importance of each to the company.
I demonstrate in this paper that the importance of an indi-
vidual can, and should, be given by his rank in the network
based on approaches such as centrality as well as approaches
inspired from his importance to the maintenance of the net-
work stability (as in Random-Targeted attacks in Complex
Networks [15, 16]).

3.2 Network Measures for Node Rank
Networks are characterized by many measurements which
can generally be classified as micro and macro. Macro mea-
surements are characteristics that pertain to the entire net-
work, such as degree distributions, number of communities,
and average path length. Contrasting with these we have
micro measures which refer to the characteristics of individ-
ual nodes and edges in the network and are used to rank
these nodes and edges inside the network.

The most basic example of a micro property is the degree of
a node, given by deg(v) and used as a property of nodes since
the beginnings of graph theory with Euler. The deg(v) in a
network represents the number of connections that node has
to other nodes where these connections can be directed or
undirected. In directed nodes, deg(v) = indeg(v)+outdeg(v),
meaning that a node, v, may have edges incoming to it and
outgoing from it. Nodes with a high degree are generally
thought of as susceptible to being affected by information
transmitted on the network. In order to normalize the de-
gree values one refers to the degree centrality of a node,
which is given by

Cd(v) =
deg(v)

|V | − 1
. (1)

In network analysis it is common to try to find a node
that is shallow on the network, meaning that its distance
to all other nodes is small. The measure that captures this
geodesic distance to all other nodes is defined as the close-
ness centrality of a node, given by Cc(v). The most accepted
definition of closeness centrality is that

Cc(v) =
1

|V | − 1

∑
s∈V \v

d(v, s), (2)

where d(v, s) is the minimum distance between v and s. Note

however that it is also common to use an alternative defi-
nition for Cc(v) defined as the maximum of all minimum-
distances between v and the other nodes.

Betweenness is another node property related to centrality.
Informally, it represents how much a node seems to be im-
portant in the connection of other nodes. Hence, a node with
high betweenness appears in many of the shortest paths be-
tween pairs of nodes. The definition of betweenness is given
by

Cb(v) =
1

σst

∑
s,t∈V \v

σst(v), (3)

where σst(v) is a count of all the shortest paths that go
through node v.

I argue in this paper that centrality measures are better
suited to evaluate developers once the network is created
than current approaches based solely on the individual. These
measures provide managers with a sense of how the network
of developers depends on certain individuals. Even more in-
teresting I show that we can use a network of files (see next
Section) to evaluate the importance of a developer. In order
to confirm my hypothesis, I perform many experiments sim-
ulating developers being removed from the project (deleted
from the network) according to their centrality measures
done here as well as the individual approaches described ear-
lier. My results demonstrate that the removal of developers
based on individual metrics such as SLOC count always per-
form either equivalently to network measures at their best,
and equivalent to removing developers at random at their
worst.

4. CASE STUDY: THE PYTHON LANGUAGE
The Python programming language was chosen as the main
focus of this study for several reasons. The first of which
was the author’s familiarity with the language and its sur-
rounding community. This familiarity brought with it two
main advantages: a slight understanding of the code base,
and a knowledge of who the “linchpin” developers are in the
community. The latter advantage mentioned acts, to some
level, as a qualitative measure of the success of the methods
used to determine developer importance.

Next, I chose Python for its size and structure. According to
the study done by Crowston and Howison [10], Python, rel-
ative to the other 119 FLOSS communities, has a large and
decentralized developer community. I chose Python specifi-
cally because I wanted a community that would rival, in size,
many of the development teams that one would see at some
of the larger successful software companies such as Google,
Microsoft, and Apple. In addition to the size, the decen-
tralized nature of the project seemed to fit the architecture
that one would see in many companies where the software
is developed by large numbers of small groups. It is due
to these features that I felt that the Python project would
stand in as a rough analog for a typical proprietary project
in a large company.

I constructed three separate networks in order to study the

dynamics of the Python software development community.
In the next few sections I will look at each network in turn
and discuss the benefits that each provides.

4.1 Source-Code Dependency Network
The Source-Code Dependency Network is essentially a graph-
based view of the software’s architecture. In other words, I
have assembled a directed graph based on the file dependen-
cies (i.e., #includes) inside of each source code file. There
were a couple of interesting properties to take note of in this
network. First, the scaling factor of the power law given by
α ≈ 3.5 ± 0.1, when the network is analyzed as undirected.
This suggests that the degree distribution for this network
does indeed follow a power-law distribution. This is a fact
that can be easily seen in Figure 1. The major hubs in the
graph are highlighted in red (and are larger in size) and la-
beled with the file’s name. As you can see there are 5 main
hubs (a few smaller ones, but only those with a degree of 10
or higher are labeled here).

Next, the clustering coefficient is zero—there is no cluster-
ing at all.This is due to the fact that software dependencies
should form an acyclic graph. As such, a clustering coeffi-
cient above 0 would suggest that there are circular references
in the software, a property that is usually ardently avoided
in most software development practices. So, a zero cluster-
ing coefficient can be one sign of a well-architected system.

I extracted the bugs that were reported as fixed in the SCM
(Source Configuration Management) logs and overlaid that
information on our network. I did the same for the devel-
oper data. This information can be seen in Figure 2. The
two networks show the bug data, Figure 2(a), and the de-
veloper data, Figure 2(b). The data shown is the number of
bugs and developers per file as a heat-map where blue (cold)
nodes represent files with relatively few bugs and developers
and red (hot) nodes representing files with many bugs and
developers; to make this even clear, the size of the nodes are
also proportional to the number bugs and developers asso-
ciated with each file. As can be seen from the networks, the
number of bugs per file tends to correspond to the number of
developers per file. In other words, the more developers that
worked on a file, the better chance that more bugs would be
reported on that file as well. The data supports what we
can intuitively tell from the network, as the Pearson corre-
lation coefficient for the data was ≈ 0.70±0.05 representing
a high correlation between the two. It is also worth mention-
ing that the distribution of the number of bugs found per
file and the number of developers per file follows a power
law. My findings suggest that both distributions (bugs/file
and developers/file) have scaling given by 1.95 ± 0.02 and
2.0± 0.05 respectively.

Recall however that the main claim in this paper relates to
using the network to evaluate developers. The results in the
previous section, given in Figure 1 by hub nodes. To study
the importance of a developer I have created another net-
work from the SCM logs. I generated a bipartite network
with files (source codes) and developers as nodes, where the
edges represent the fact that a developer has worked on a file.
From this bipartite graph, I created two single-mode projec-
tions, both of which are discussed in the following sections.

Python.h

pythread.h

 structmember.h

 pymactoolbox.h

ffitest.h

Figure 1: Source Code Dependency Network

Python.h

pythread.h

 structmember.h

 pymactoolbox.h

ffitest.h

(a) Number of bugs per file

Python.h

pythread.h

 structmember.h

 pymactoolbox.h

ffitest.h

(b) Number of developers per file

Figure 2: Bug and Developer Data. A heat-map for the color of the nodes as well as their size represent the
numbers of bugs/file and developers/file.

4.2 Developer Network
The developer network is an undirected projection of the
bipartite network in which nodes represent developers in the
community and edges represent collaborations; an edge was
drawn between two nodes if both developers had worked on
at least one common file. A weight was then assigned to
each of these edges based on the number of common files on
which the two developers had worked, thus, strong and weak
collaborative relationships could be easily distinguished.

The developer network is in essence an indirect social network—
indirect because developers are not required to know each
other in the real world to essentially be collaborators in the
software development project. However the network topo-
logical characteristics are not true for social networks since
they are just projections of the real (bipartite) network.
For instance, the developer network does not have a strong
power-law degree distribution. This might also happen due
to the unique fact that Python is an open-source project
where contributors (165 in our case) are inclined to look at
most files and hence be connected to most other developers
in this projection. Some of these links however are sporadic.
If we consider the distribution of weights as part of a node’s
properties (as argued by Opsahl et al. [17]) the network be-
haves as many real networks do and a power law is, in this
case, observed.

In order to evaluate the importance of a developer I have
then looked at the size of the largest connected component
in the network (aka Giant Component). The premise here
is that if a user is important she should be missed in the
network. This “missing” factor occurs if the removal of the
developer from the network causes the network to become
more disconnected (size of the Giant Component decreases
significantly).

Figure 3 is used to demonstrate that metrics based on the
individual are not very realistic in identifying relevant devel-
opers. To demonstrate this fact I have removed developers
from the network randomly and by the number of commits
the developer had to the project (a commit occurs when a
developer has produced a new version of the source code; a
good approximation for SLOC). Figure 3 shows that the ran-
dom removal and commit-count removal (highest commit-
count first) causes a similar effect to the giant component—
it decreases in size somewhat linearly. This result demon-
strates that commit-count is as good (or as bad) as a metric
to identify talent in a software development process as a
random identification. Figure 3 also shows our proposed
approach in which talented developers are removed accord-
ing to centrality measures in the network. Note that they
all provide a significantly better measure of talent since the
network degenerates faster after about 30% of the nodes
are removed. This means that once the developer network
is formed one can decide on talent based on the centrality,
closeness or degree of the developer.

4.3 Source-Code Network
In this network, nodes represent source code files and weighted
edges represent the number of developers that have worked
on both files. In this experiment, I measure the robustness
of the source-code network after the removal of developers.
When a developer is removed from a network (say because

she left the company) her contribution to all the edges of
the source-code network has to be removed. Hence, I as-
sume here that a developer is important when she is required
to maintain the connectivity of the source-code network. If
a developer disconnects the source-code network when re-
moved, that developer is important for the flow of knowl-
edge between different parts of the development process and
should then be highly valued.

I repeated the removal experiment of Figure 3 but this time
measuring the size of the giant component in the source-
code network. The effect here is very interesting since I
immediately see the importance of a few individuals. When
developers are removed randomly or using commit counts
the network maintains itself well connected until about 60%
of the nodes are removed. Even more interestingly is to ob-
serve how poorly commit-count removal performs—my ex-
periments with the Python community demonstrates that
commit-counts perform worse the random removal. In prac-
tice this experiment says that the random identification of
a developer to be rewarded is better than the identification
based on how many modifications he performed to the source
code in the project. On the other hand, the centrality mea-
sures are very effective and perform equally well. The size
of the giant component decreased to about half of its size
when only 20% of the network was removed.

4.4 Further Tests
In the previous sections I describe the successes I had ex-
perimenting with the Python community. The reasons that
Python was chosen as my initial case study were detailed in
section 4 and it is for those reasons that I include it here
as an example of the process I followed in this study. Nev-
ertheless, I did also perform the tests described above on a
handful of other communities. Specifically, I ran the same
tests on the Linux, Ruby, Ruby on Rails, Django, and Net-
workx communities. These spanned the spectrum of SCM
technology, using not just classical centralized systems such
as Subversion, but also newer decentralized systems such as
Git and Mercurial and so the communities behind each dif-
fered in their behavior with respect to centralization. My
tests in each of these cases were not nearly as successful as
my initial case. In each of these cases commit count per-
formed roughly equivalently, if not just slightly worse than,
network centrality measures in determining the worth of in-
dividual developers within a community. The key takeaway
here though is that, even though the test results were not
quite as striking as those in the first example, they still
showed that network measures always performed at least
as well as, if not better than, traditional measures making
the network a more consistent and reliable tool than tradi-
tional metrics for evaluating software developers within an
organization.

5. CONCLUSION AND FUTURE WORK
In this paper I propose that current methods for evaluating
software developers within an organization are poor indi-
cators of the overall importance of the developer. Metrics
that have been in use since the creation of the software engi-
neering discipline are still largely in use today despite their
well known inadequacies. As a solution, I propose the use of
network measures of centrality as a better indicator of how
vital each developer is to the success of their organization.

!"

#!"

$!"

%!"

&!"

'!!"

'#!"

'$!"

'%!"

'&!"

'" ''" #'" ('" $'")'" %'" *'" &'" +'" '!'" '''" '#'" '('" '$'" ')'" '%'"

!"
#$
"%
#&

'(
")*
"+
,-
.'
(/
"0
#1

2#
*'

*/
"

!"#$"%#&'("3'1#4'&"

,-./01" 201134"205.4" 678977" 2:0;7.7;;" <74=77..7;;"

Figure 3: Behavior of the giant component in the developer network as nodes are removed from the network.

!"

#!!"

$!!"

%!!"

&!!"

'!!"

(!!"

)!!"

#" ##" $#" %#" &#" '#" (#")#" *#" +#" #!#" ###" #$#" #%#" #&#" #'#" #(#"

!"
#$
"%
#&

'(
")*
"+
,-
.'
(/
"0
#1

2#
*'

*/
"

!"#$"%#&'("3'1#4'&"

,-./01" 201134"205.4" 678977" 2:0;7.7;;" <74=77..7;;"

Figure 4: Behavior of the giant component in the Source Code Network as developers are removed from the
bipartite network (edges in the Source Code Network).

In this study, I have chosen a large, well-known, open source
project with a very active developer community with which
to test my hypothesis. The previous section discusses the
results of this study in detail and also discusses a handful
of secondary tests as well, but in short, I found that net-
work measures were indeed a much more accurate measure
of the importance of an individual developer within a de-
velopment community. In all cases I found that network
measures always performed at a level equal to, or better
than, traditional metrics.

There are two main areas on which I’d like to concentrate
my efforts for future work. The first is simply solidifying the
results I have attained thus far by experimenting with even
more projects in the Open Source community to make sure
that the results found thus far are consistent across a much
larger number of different projects and not specific to only
the Python community. Testing these measurements on a
proprietary project, I feel, would also help to cement the re-
sults found in this study and is an option that I am actively
pursuing at this time. The second area I’d like to focus on is
the dynamic nature of network measurements and how im-
portant it may be in determining developer importance. To
illustrate this point consider a community of several teams
of developers; each team working on a specific area of the
software with some overlap between teams. As members
of the community come and go for whatever reason, the
importance of individuals within the organization changes.
For example, if several developers on a single team leave
at once, the importance of the remaining members of that
team should grow since the loss of these individuals would
open up a structural hole in the community. Since network
centrality measures take into account the structure of the
network, they tend to change as the structure of the net-
work changes, whereas measures such as code and commit
count remain constant no matter how much the surrounding
environment changes. In this study I focused on measuring
individuals importance with respect to the network as it
currently exists. For future work Id’d like to examine how
changes in the community structure effect the importance
of individuals within it and how well this method captures
those changes as opposed to the static methods used in cur-
rent practice.

6. REFERENCES
[1] Peter Naur and Brian Randell. Software engineering:

Report of a conference sponsored by the nato science
committee. Technical report, North Atlantic Treaty
Organization, 1968.

[2] Norman E. Fenton and Martin Neil. Software metrics:
successes, failures and new directions. Journal of Systems
and Software, 47(2-3):149–157, 1999.

[3] Steven D. Sheetz, David Henderson, and Linda Wallace.
Understanding developer and manager perceptions of
function points and source lines of code. Journal of
Systems and Software, 82(9):1540–1549, 2009.

[4] S.C Eick, J.L Steffen, and E.E Sumner. Seesoft-a tool for
visualizing line oriented software statistics. IEEE
Transactions on Software Engineering, 18(11):957–968,
1992.

[5] Lucian Voinea, Alex Telea, and Jarke Wijk. CVSscan:
visualization of code evolution. SoftVis ’05: Proceedings of
the 2005 ACM symposium on Software visualization, May
2005.

[6] Tudor Gı̂rba, A Kuhn, M Seeberger, and S Ducasse. How
developers drive software evolution. Eighth International
Workshop on Principles of Software Evolution, pages 113–
122, 2005.

[7] Gregory Madey, Vincent Freeh, and James Howison. The
open source software development phenomenon: An
analysis based on social network theory. In AMCIS 2002
Proceedings, 2002.

[8] Duncan J Watts and Steven H Strogatz. Collective
dynamics of small world networks. Nature, 393:440–442,
1998.

[9] Albert-László Barabási and Réka Albert. Emergence of
scaling in random networks. Science, 286(5439):509–512,
October 1999.

[10] Kevin Crowston and James Howison. The social structure
of free and open source software development. First
Monday, 10(2), 2005.

[11] Stanley Wasserman and Katherine Faust, editors. Models
and Methods in Social Network Analysis, volume 8 of
Structural Analysis in the Social Sciences. Cambridge
Press, 1994.

[12] Peter J. Carrington, John Scott, and Stanley Wasserman,
editors. Models and Methods in Social Network Analysis,
volume 27 of Structural Analysis in the Social Sciences.
Cambridge Press, 2005.

[13] Pavel Berkhim. A survey on PageRank computing. Internet
Mathematics, 2(1):73–120, 2005.

[14] Ted G. Lewis, editor. Network Science: Theory and
Applications. Wiley, 2009.

[15] Romualdo Pastor-Satorras and Alessandro Vespignani.
Immunization of complex networks. Phys. Rev. E,
65(3):036104, February 2002.

[16] Albert-Laszlo Barabasi and Eric Bonabeau. Scale-free
networks. Scientific American, pages 50–59, 2003.

[17] Tore Opsahl, Filip Agneessens, and John Skvoretz. Node
centrality in weighted networks: Generalizing degree and
shortest paths. Social Networks, 32(3):245–251, 2010.

