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1. INTRODUCTION
Our project involves exploring the features of the Starcraft
2 match graph. Starcraft 2 is a competitive popular ”Real
Time Strategy” (RTS) game. These types of games do not
incur turns and are done “live” such that each player is es-
sentially managing his/her team in real-time with others.
Players start with an initial collection of economic units and
“town center,” and over the course of the game manage their
economy, army units, and available technology to best their
opponent by destroying all of the opponents buildings before
their own are destroyed. After games are played, a replay is
saved detailing pertinent information about the game, such
as who participated, who won, who had a better economy
score, technology score, army score, etc.

The multiplayer aspect of Starcraft 2 is an extremely popu-
lar feature of the game. Players can either choose the players
they play against in custom games, or can try to improve
their ranking by playing ladder games. Players have rank-
ings which either decrease or increase with losses or wins
respectively in ladder games. The goal of our project is
to predict wins/losses between any two given players that
participate in Starcraft 2. To accomplish this goal we can
formulate the win/loss prediction problem as a variant of
the canonical link prediction problem in social networks.

As a result of our analysis, we developed an intuition for
the nuances and difficulties of the project. It is a three-
part story: First, global features provide context surround-
ing the overall ability of a player and provides essentially
a prior for his/her ability. Second, local features provide
importance when examining a hypothetical game, most im-
portantly when two players have similar global “rankings”.
Finally, although the network is sparse, we cannot limit our
analysis to a particular level of minimum embeddedness, as
the context provided by the “outlier” edges (i.e., those with
no shared nodes) proved to be critical in analyzing the net-
work.

This work consists of four primary parts. First, we outline
our methodology for gathering and synthesizing the data.
This includes gathering game-specific data from multiple
sites, and tying this together with general data about play-
ers collected from a “master” site. Second, we perform some
top-level statistical analysis, analyze structural properties
involving the network, and present some of the challenges
that appeared during analysis. Third, we examine several
different methods using global and local features for win pre-
diction and their resulting performance. Lastly, we explore
possible directions for future research.

2. DATA COLLECTION
The synthesis of our data required more overhead than query-
ing a database or parsing a single flat file. Our initial plan
was to contact Blizzard in the hopes that they would pro-
vide us with some pre-packaged data. That turned out to
be fruitless, and we turned to building our system to har-
vest SC2 data. We identified several repositories for user-
uploaded content, in the form of .sc2replay files. These
files store proprietary Starcraft 2 “replay”data, and includes
many of the properties and facts about the game. We began
by first building a custom scraper for each site, in addition
to one for the main StarCraft2 UID resource (which indexes
all UID’s and relevant statistics for that player, without the
granularity of a per-game basis). We then examine the DOM
and determined what pathway to traverse in order to arrive
at a downloadable file, and thus we were able to construct
a large list of direct pointers to replay files. Subsequently, we
used PHP SC2Replay1.30 (http://code.google.com/p/phpsc2replay/ )
to parse out relevant data from each individual file .

Our data was originally parsed from Starcraft 2 replay sites
gamereplays.org/starcraft2 and sc2.replayers.com. Unfortu-
nately some of the .sc2replay format is unknown and changes
as the game is updated with subsequent patches. As a re-
sult we could only use a subset of the replays on each site
for our data, as a result of the problems and deficiencies of
the PHP SC2replay 1.30 parser. Additionally since we were
measuring player to player (1v1) relationships, we excluded
replays that were of games where more than 2 people were
participating. Of the 3,500 replays on sc2.replayers.com we
managed to successfully parse and extract about 2,500 1v1
replays. Of the 24,000 on gamereplays.org/starcraft2 we
managed to successfully parse and extract about 12,000 1v1
replays.



The replays contain rich data, that we were able to extract
by parsing the files. This included the game duration in
seconds, the server region the game was played on (match
servers are region locked), average actions per minutes (keys
pressed / button clicks), the winner, each players chosen
race (there are 3 possible races in Starcraft), each player’s
unique identifier (UID), and the map the game was played
on. Using the UID we were able to extract further infor-
mation by crawling a site, sc2ranks.com, about individual
players. sc2ranks.com contains rankings of the 1.5 million
Starcraft 2 players that have played a game online. The
site contains rich information about players such as their
name, the league they play in (Bronze, Silver, Gold, Plat-
inum, Diamond), their total number of points, total wins,
total losses and win percentage. Leagues denote overall skill
level whereas points within a league give a more granular ac-
count of a player’s relative ranking. Players swap between
leagues by ascending to the top of their league and remain-
ing there for an unspecified amount of time. As a result we
were able to extract replays which contained latent informa-
tion regarding the in game performance of players, as well as
other information about the game, as well as extract meta-
data concerning the players, to form a more complete picture
of the relationship between a player-to-player matchup.

3. STRUCTURAL ANALYSIS
In this section, we explore some of the interesting properties
of the Starcraft 2 network, including the degree distribu-
tion, win percentages and points associated with players.
Additionally, we are interested in the breakdown of differ-
ent leagues and races, relative to their win percentages and
player performance. Finally, based on these plots, we hope
to gain an understanding of some of the basic dynamics of
the network: what biases may exist in the data, and what
we can infer from the network in general.

The following analysis assumes we create a directed graph,
where a node represents a player and a directed edge A → B
means that player B beat player A. If there are multiple
games played between two players, the player who has won
more against his/her opponent achieves an incoming edge.
Thus, an incoming edge indicates that the player has an
overall winning record against the opponent.

To begin, we examine the log-log degree distribution of the
network in Figure 1. Note that degree is defined as the total
number of incoming and outgoing edges from a node (i.e.,
how many games a player has played). Closely tied to the
degree of a node, we will explore what it means to be a good
player versus a popular player later in this work. It is clear
the distribution follows a power law, noted by the negative
linear slope in the log-log plot. This has two possible inter-
pretations: 1) Great players stay great players, and thus win
the majority of the games (a “rich get richer” dynamic), 2)
certain players are more popular and thus get their replays
submitted to the website more often than others. Also, it
interesting to note that using the estimation in Clauset et
al., we obtain α = 2.16 for our power law distribution.

Additionally, it is interesting to examine other properties as
they relate the the degree of nodes. For example, Figure 2
shows win percentage as a function of the node degree. This
shows that, in general, the average number of wins for every-
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Figure 1: Log-log plot of the degree distribution
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Figure 2: Degree vs Win Percentage

one is around 50%. There is variance around smaller number
of degrees, but as the number of degrees grows larger, the
win percentage actually starts to converge toward 50%. This
is quite interesting in the context of our problem, such that
the best players may not have the best win percentage, but
should be examined using other factors (such as comparing
them against other good players). Finally, it should be noted
that there is a heavier distribution of players with sub-50%
records with very low degrees, suggesting that very young
players likely lose more often.

We examined another aspect of win percentage: What if we
run PageRank [2] on the graph, and compare the PageRank
to the win percentage? In this way, we may be able to com-
pare what the network structure indicates (via PageRank)
versus aggregate data about players (win percentage). Thus,
in Figure 3, we see this comparison. On the X-axis we show
the PageRank (lower is better), and on the Y-axis we show
the win percentage. This, again, shows that win percentage
is likely a poor indicator of success. On the other hand, one
can notice a slight increase in win percentage for the very
highest ranked players in the network. Thus, there may be
some correlation between their “influence” in the network,
and their win percentage.

Aside from degree distributions, there are other interesting
properties associated with this data. For example, Table 1
shows the average PageRank for each of the leagues (where
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Figure 3: PageRank vs Win Percentage

Table 1: Average PageRank for each league
League Avg PageRank
Bronze 4788.42
Silver 4844.13
Gold 4558.52
Platinum 4607.49
Diamond 4575.04

lower PageRank is better). Note the leagues are in ascend-
ing order of height; in other words Bronze is worst and Di-
amond is best. It is interesting to note that while generally
the better leagues have better ranks, Gold outperforms Di-
amond and Bronze outperforms Silver. Ideally, this would
not occur, but it is not clear where the deficiency lies: Is the
Starcraft 2 league system flawed? Perhaps different leagues
are harder and there is not enough activity between different
leagues? These questions are an important next step in the
analysis, and will be included in the final report.

We plot the number of player points as a function of degree
in Figure 4. This graph shows that the number of points as-
sociated with a player does not necessarily correlate with the
number of games he/she played. Finally, we examine Fig-
ure 5, which plots the number of player points as a function
of the PageRank for the player. This indicates that points
correlate very little with the PageRank. If, in fact, either
of these prove to be good indicators of the player’s ability
to win a game, this will then suggest the other metric is of
little use to the analyst. In the following section, we will
show that PageRank ends up proving to be a successful in-
dicator of success, and furthermore enhances our hypothesis
that the number of player points is not a good predictor for
success in a game.

4. WIN PREDICTION
In the previous section, we attempted to find structure re-
garding degree, win percentage, PageRank, and other char-
acteristics. Unfortunately, there is no clear feature that
provides separation of nodes (players). In this section, we
first explore heuristic features to attempt win prediction,
followed by an exploration of global features (e.g., PageR-
ank) to predict wins. Then, we explore methods for exam-
ining the local relationships between two players in order to
predict a winner. Using these two results, we present our
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Figure 4: Degree vs Player Points
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Figure 5: PageRank vs Player Points

discovery: a clear winner using a hybrid model. Finally, we
present our results using a common method when dealing
with sparse networks, a particular difficulty in our network.

4.1 Heuristics and Global Network Features
Below, we describe several methods that compare either a
single feature about the two players, the game features, or
global characteristics. Table 2 summarizes the results of the
experiments.

Random Used for a baseline, the random algorithm ran-
domly selects a player to win the game. Of course, this is
expected to be roughly 50%.

LeagueRank When Player A faces Player B, we choose
the winner based on the highest league ranking (according
to Bronze, Silver, . . ., Diamond). If both players are from
the same league, then the number of points are chosen to
differentiate the players.

WinPctRank Players A and B are compared as a function
of the overall win performance, discounting all other factors.
If they have the same win percentage, the algorithm defaults
to the number of points.

PointsRank Players A and B are compared as a function of
the number of points the player has received on Battle.Net.
The calculation of this value is proprietary, but it is used to



evaluate players within the system to determine ranking.

DegreeRank Players A and B are compared as a function
only of the node’s degree. If the degree is equal, the al-
gorithm reverts to win percentage, then to the number of
points.

PageRank [2] Using the structure defined in Section 3, we
gather the PageRank values for the network. From these
values, we then select the player with the highest PageRank
value as the winner. Note that in this methodology, we
tested over each instances, and ensured that we removed the
current game’s edge between the two nodes before running
PageRank. In this way, the network contains no context
about the game for which we are predicting.

SVM+Game Features In this method, we learn an SVM
model using global features associated with the game (ver-
sion, map, duration, location), player details (league, num-
ber of points, win-percentage), and game-specific player de-
tails (actions-per-minute, race). From here, we then train
and test using 5-fold cross validation to obtain the accuracy
of our model. Finally, we attempt 3 different SVM kernels
for completeness, in order to set an appropriate baseline
comparison.

Table 2 summarizes the results of these algorithms. Most of
the associated algorithms win out over the Random baseline
comparison. In particular, the ranking algorithms perform
the best. Specifically, when we choose the highest PageRank
player, we obtain the highest percentage accuracy. This in-
dicates that the network structure of this data is crucial to
understanding who the best players are in the network. In
some respects, this is to be expected, as the number of wins
is not necessarily the best indicator of future performance.
On the other hand, if one has beat many other players with
many wins, then they are likely to be a good player (which
is precisely the dynamic for which PageRank is attempting
to capture).

There are a few key messages to take away from these anal-
yses. First, league rank and win percentage are poor indica-
tors of future performance, which is likely due to the way in
which players climb ladders and play more challenging oppo-
nents as they play more often. In addition, points have very
little relevance to a player’s abilities, as shown by the lowest
heuristic score in the table. Finally, and most interestingly,
the degree of the node is not a good indicator of a player’s
performance. This suggests two major things: 1) players are
not self-selecting, in that the players who appear most are
not necessarily the best and most likely to be winners, and
2) there are many nodes that have low degree. The former
point is crucial, as we can make stronger assumptions about
the network, such that the importance of “fringe” players is
not to be discounted and will aid in a global feature classi-
fier. Specifically, this indicates that a popular player is not
necessarily a great player.

4.2 Local Features
While PageRank is a clever utilization of the global network
structure, we were interested in analyzing how the local net-
work structure surrounding a given pair of nodes can be
utilized to improve prediction. PageRank lends itself well to

Table 2: Comparison of heuristic and global feature
win-prediction algorithms

Algorithm Accuracy
Random 0.500
LeagueRank 0.556
WinPctRank 0.561
PointsRank 0.549
DegreeRank 0.592
PageRank 0.705
SVM (Linear Kernel) 0.497
SVM (Polynomial Kernel) 0.533
SVM (RBF Kernel) 0.512
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Figure 6: Local feature methods, compared with
best heuristic method (PageRank)

the win/loss semantics of giving losers giving weight to the
winners, but local network features allows for a more nu-
anced analysis of by looking exclusively at the games played
by the given players, while ignoring large, potentially irrel-
evant portions of the network.

The local features we used were adapted from the ”Balance”
theoretic features shown in Leskovec et. al [1]. A balance
feature’s basic unit is the triad. If w is a common neighbor of
u and v, the u, v, and w form a triad. Using triads, we can
characterize the relationships between two nodes by their
relationships that they have with their common neighbors.

Balance features posit statements such as, ”The enemy of my
friend is my enemy.” Here a positive edge represents friend-
ship, and a negative edges represent antagonistic relation-
ships. Letting a positive relationships value = 1, and a neg-
ative relationships value = -1, with nodes u, v, and common
neighbor w, that sign(u, v) = sign(u, w) ∗ sign(v, w).

In our work we incorporate several different semantics of
sign and direction. Additionally, we include the different
triad types as feature inputs to our classifier, in addition to
balance.

Below, the methods are described. In each case, we use a
basic logistic regression model with the features described.
Figure 6 compares each method, where the X-axis is the
threshold used to separate positive and negative edges and
the Y-axis is the accuracy given that threshold.



Edge Sign + Win Percentage In this method, we use an
undirected graph. Each edge represents a game, and each
edge has a sign: If the player that won has a higher winning
percentage than the player that lost, we give the edge a
positive (+) sign. Otherwise, if the player that lost has a
higher winning percentage, we give the edge a negative (−)
sign. Finally, for each edge, we create 9 total features:

- Total incoming negative edges for each node (2 features)
- Total incoming positive edges for each node (2 features)
- Total number of common neighbors (1 feature)
- Counts for each triad type: For each common neighbor w
of nodes u and v, count the number of times we see +/+,
+/-, -/+, -/-. (4 features)

Edge Sign + League Exactly the same formulation as
Edge Sign + Win Percentage, but instead of using Win Per-
centage as the criteria for choosing sign, we use the player
with the higher League ranking. Note, if the player is in the
same league, we revert to win percentage.

Win/Loss Triads Instead of using edge sign, we consider
the original directed graph we used when performing heuris-
tic tests. Thus, it will be a slightly similar formulation as
the edge sign features, but we will consider win/loss com-
parisons instead. Thus, we have 9 features:

- Total losses for each node (2 features)
- Total wins for each node (2 features)
- Total number of common neighbors (1 feature)
- Counts for each triad type: For each common neighbor w
of nodes u and v, count the number of times we see W/W,
W/L, L/W, L/L. (4 features)

When examining the comparison of these methods, we notice
that the winner is the final method, WL Triads (excluding
the PageRank baseline). It has a peak accuracy of 0.687,
and outperforms the other edge sign techniques. The reason
is likely intuitive to a practitioner: as we saw from the struc-
tural analysis of the network, win percentage and league are
poor indicators of talent and thus because we chose to use
them as our criteria for choosing the sign, we were unlikely
to get a strong classification.

These methods are purely local methods, that consider only
a two-step approach from each pair of nodes for each edge.
Unfortunately, none of these methods were able to beat the
PageRank global feature heuristic tested above. On the
other hand, it did perform significantly better than random
(0.687 vs 0.50), and thus we should not discount the impor-
tance of local features in this network.

One idea for improvement would be to combine the two
methods, and predict wins using both the local and global
features. In this way, we may be able to improve the over-
all accuracy. In fact, this is exactly what occurred. Fig-
ure 7 compares each of the local feature-based algorithms,
but includes a 10th feature: its PageRank value. As can
be seen, the WL Triads + PageRank algorithm was able to
outperform all of the local algorithms and also the global
PageRank baseline, with a peak accuracy of 0.781. In the
end, this algorithm ended up being the clear winner among
all algorithms attempted in these experiments.
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Figure 7: Hybrid feature methods, compared with
best heuristic method (PageRank)

Why do the features that count the combinations of W/W,
W/L, L/W, L/L provide insight? First, we can analyze
this quantitatively. In the winning model, WL Triads +
PageRank, each of the triad features had the coefficients
that appear in Table 3 (averaged over all tests).

Table 3: Average coefficients for triads in WL Triads
+ PageRank model (logistic regression model)

Feature Coefficient
W/W 0.0053
W/L 0.1921
L/W 0.1401
L/L 1.532× 10−6

where the coefficients are gathered from a generic logistic
regression model and normalized to 1. It is striking that
the two features W/L and L/W are weighted highest. This
is likely to lead from the intuition that when Player A has
lost to Player C in the past, and Player B has won against
Player C in the past, then Player B is likely to win against
Player A. The coefficient data seems to reflect this, and in
fact when two players have similar records against the same
player, it suggests further that it provides little information
to the analyst.

4.3 Sparse Network Challenges
One of the challenges in this network is that it is quite sparse.
For example, there are only 784 edges with nodes that share
other nodes. Furthermore, the graph density is 6.714×10−6

using the formula:

density =
m

n(n− 1)
(1)

where m is the number of edges and n is the number of
nodes. To provide some intuition on the values, 0.0 would
mean no edges, and 1.0 would be a complete graph. Thus,
to alleviate this problem, we examined the network where
we only included edges with a minimum embeddedness of 1.
In other words, all edges in which there were no other shared
nodes (i.e., no triads) were removed. In this case, we had
784 edges, and a graph density of 0.00706.
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Figure 8: Local feature methods, compared with
best heuristic method (PageRank). Network is
pruned to include only edges with minimum embed-
dedness of 1.
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Figure 9: Hybrid feature methods, compared with
best heuristic method (PageRank). Network is
pruned to include only edges with minimum embed-
dedness of 1.

We replicated the experiments from the previous sections
with our new network, as shown in Figure 8 (local features
only) and Figure 9 (hybrid features). The purple line is pro-
vided as a baseline, which represents the heuristic PageRank
value, built using the entire network, but testing only the
edges in the new pruned graph. This allows us to see the
impact of losing the context of all of the sparse edges in the
network.

Because we have removed all edges that have no local con-
text, it could be intuitive to expect that accuracies would
increase if we only examined the subset of nodes with a min-
imum embeddedness. In other words, because we are largely
guessing at random for those nodes without any local con-
text (i.e., zero embeddedness), we are likely to improve when
only considering high-signal edges. Unfortunately, this was
not the case in our experiments, as we see the accuracy for
the same method drops significantly. We suspect that, in
general, this is caused by a lack of overall global informa-
tion that was originally provided by the PageRank feature.
In other words, because we have large amounts of knowledge
about winning against other players, even if the number of

edges are not dense, the mass gathered through a PageRank
iteration is significant when comparing two instances.

5. FUTURE WORK
One of the shortcomings of our project was that the amount
of data we collected with respect to the true size of the net-
work is miniscule. With 40,000 replays, this represents an
extremely small fraction of the network that could be ex-
plored. A natural step to remedy this problem would be to
partner with Blizzard Entertainment, the makers of Star-
craft 2 obtain access to the entire database, as they were
unresponsive to our initial requests.

Additionally, our parser provided more information that we
were currently using. For example, the parser can extract
the units/buildings produced by given players, and the or-
der in which they were produced. This ”Build Order” gives
insight into a given player’s style, and also is an implicit
time series. Using given time series clustering methods or
similarity metrics we could cluster players according to their
play style, obtaining an analysis of what play styles tend to
work well against other play styles.

Moreover, the parser gives us access to what region the
match was played on. Matches in Starcraft 2 are region
locked, a player on the North American server cannot play a
game against a player on the South Korean server. It would
be interesting to analyze what strategies are popular on dif-
ferent networks, and how strategies propagate throughout
time. This would be doable, given that our parser can ex-
tract time stamps from the game, but would again, hinge
on access to a more complete database of games for a true
picture of strategy propagation.

Another item of interest that we can measure in our net-
work is the strength of particular racial match-ups, and map
match-ups. We can ask questions such as “Do lower ranked
players of race X consistently beat higher ranked players of
race Y?”, and “Does race X win at a higher rate on map A
against race Y?” Additionally the parser can extract richer
data than we have presented here. For example, the parser
can extract specific actions by players. For example, the
parser can determine a “build order” that denotes what a
player built an when. An example of this would be

“10 seconds, built a worker”

“24 seconds, built production facility X”

“36 seconds, built warrior type Y”

Using these build orders we can determine common strate-
gies that players use in the network, and perhaps similarly,
conventions used to counter particular strategies (for exam-
ple, sacrificing your long-term economy for a burst military
force with the hope that you can“rush”your opponent before
they can establish their style of play). With these additional
dimensions, we hope to incorporate the matter of in-game
race (Terran, Protoss, and Zerg) to try and make accurate
predictions with respect to certain in-game stages (economic
score, natural expansions, etc), in addition to considering
multiple players across multiple races (i.e. does Player X
playing race X retain his advantage when playing Player



Y’s race Y). For example, given player X with a certain eco-
nomic establishment on race Y, what is the likelihood of
victory against his opponent (real or imaginary) with an es-
tablished economy of Z. Our hypothesis is that due to the
high in-game balance (of races), along with specialization
which players embark when choosing to play specific races,
we will present interesting findings when introducing these
additional dimensions.

Countering strategies may also arise, and a player’s mas-
tery of a particular countering strategy (bucketed by cer-
tain traits, such as military:economic spending), may in-
troduce additional inputs to our prediction algorithm. We
also expect to encounter similar findings when using sev-
eral similar variables, such as map advantages. Here, we
expect that top-level players will have a more well-rounded
profile, performing fairly equivalently across map types (or
alternatively, maybe just those maps that are used in spon-
sored tournaments). With that said, it would be interest-
ing to see whether we can identify any behavioral patterns
across certain maps–perhaps players favor a certain race or
strategy depending on what opportunities the map presents
(economic favoritism, militaristic advantages, etc), and sub-
sequently, what handicap that enables in a 1v1 matchup.
Using the parser identified above, we’ve discovered we can
extract extremely granular data, which we intend to utilize
more going forward in the next two weeks to extract some
of these more subtle–but intriguing–characteristics of game-
play.
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