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ABSTRACT

We observe non-trivial temporal variation and correlation in
the usage patterns in a wide range of social network links. In
particular, we note that the usage of links is highly variable
and temporally correlated (bursty) over a large number of
time scales. This is in contrast to a naive analysis that
might assume that use of Internet-enabled social networks
smoothes as the aggregation scale increases.

To quantify these variations, we introduce several statisti-
cal metrics and evaluate them on real data collected from a
number of diverse social networks. In addition, we show how
to interpret these metrics in terms of scales that naturally
apply in human dynamics—days, weeks and months—and
we find commonalities among different networks in their be-
havior at these natural time scales. Finally, we define sta-
tistical metrics that can be summarized as vectors and used
to label nodes or edges in networks for studies of correlation
or information flow.

Categories and Subject Descriptors

C.4 [Performance of Systems|: Modeling techniques; G.3
[Probability and Statistics]: Time series analysis

General Terms

Measurement, Performance, Experimentation
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1. INTRODUCTION

In this paper, we study the burstiness of activity over
electronically-mediated social network systems and, in par-
ticular, over network links. In bursty links, traffic patterns
tend to be correlated in time, with busier periods followed
by more busy periods with a high likelihood and lightly
loaded periods followed by more lightly loaded periods with
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a high likelihood. We investigate this property in social
networks such as several e-mail networks and the meme-
tracker network. As a baseline, we investigate the aggregate
communications activity in these networks and draw conclu-
sions about the “bandwidth” of the communications link—
the amount of traffic that the link sustains as time passes.
We also consider the behavior of individual network links
and define vectors representing several statistical properties
that can be used for clustering and correlation analysis.

The rest of the paper is organized as follows: in Section 2,
we review related work; in Section 3, we summarize the net-
work data used for this study; in Section 4, we define and
demonstrate the statistical metrics; in Section 5, we discuss
the lessons and applications provided by these techniques;
in Section 6, we suggest a model for bursty links; and in Sec-
tion 7, we provide concluding remarks and suggest directions
for future work.

2. BACKGROUND AND RELATED WORK

One of the first studies of social networks can be traced
to Leland et. al’s seminal study of the variation of Ether-
net traffic in time [6]. Although not viewed at the time
as a social network, the work examined aggregate Ethernet
network traffic over a large research institution, the former
Belcore labs. Since most Ethernet traffic is generated by hu-
man users, the variation in traffic generally corresponds to
human behavior. This study concluded that network traffic,
in aggregate, was self-similar—it varied consistently over
many time scales.

There is an elegant social story that helps explain this
observation: the network is used more heavily during work
weeks than on holidays; it is used more on weekdays than
on weekends; it is used more during work hours than at
night; and it is used more at 9 AM and 3 PM than at 6 AM
and noon. Certain events, such as news events, deadlines
for large projects, etc., cause many people to utilize com-
munications links at once. The heavier (and more lightly
loaded) periods are likely to be followed by additional heavy
(or light) periods, suggesting burstiness. Furthermore, a
similar story is true at hugely divergent time scales.

Subsequent studies of social network links have generally
not considered time series analysis of aggregate or individ-
ual behavior. Instead, more general and time-independent
conclusions have been reached. For example, Kossinets and
Watts [5] consider a large e-mail network from a university,
and make conclusions about cyclic, focal, and triadic clo-
sure and the clustering coefficient. Several papers consider
the distribution of interarrival times in e-mail networks [3,



8, 14]. Although there is a consensus that this distribution
is heavy tailed, this may due to natural cycles in human ac-
tivities [8] as opposed to a fundamental characteristic of the
e-mail channel.

The characteristics of channel variation over multiple time
scales have been studied in the context of low-power wireless
networks. In the context of these studies [10, 11], pervasive
burstiness and self-similarity were observed. We posit that
similar characteristics exist in social networks and investi-
gate them further in this paper.

3. NETWORK DATASETS

We consider three diverse social networks in this study:
the Meme-Tracker dataset [7], the Enron e-mail dataset [4],
and an e-mail dataset from a large research institution.

Meme-Tracker Dataset. We consider the time series of
the number of memes posted to more than 1.6 million blogs
and 20,000 sites indexed by Google News. The data set un-
der consideration includes all articles from a 184-day period
in late 2008 and early 2009 covering the US presidential elec-
tion. We capture the number of memes at a one-second and
one-minute granularities.

Enron E-mail Dataset. We also consider about a half
million e-mails from 150 Enron Corp. executives collected
and released in court cases following the collapse of the com-
pany. We do minimal cleansing of the data by removing
any message time-stamped before 1990 or after the end of
2002. We consider all messages in this dataset, including
both those sent to and received by Enron employees.

Research Institution E-mail. Finally, we study e-mail
from a large research institution that tracks 2,397,402 mes-
sages over a period of about 1.5 years. There are a total
of 225,409 senders in the full dataset, but only about 2,500
addresses have a domain corresponding to that of the insti-
tution. We consider both the aggregate e-mail traffic and
just those messages sent by members of the institution.

This follows from the observation that sent messages may
be a more reliable indicator of e-mail communication than
received messages—sent messages do not include any spam
that remains undetected, for example [12].

4. STATISTICAL METRICS

To study the burstiness and time-varying characteristics
of social network links over a wide range of time scales, we
considered a number of statistical metrics. We detail these
metrics and provide examples.

4.1 Lens Plot

A lens plot is a set of diagrams illustrating the volume of
a certain traffic—mumber of packets received, number of e-
mails sent and/or received, number of news articles posted,
etc.—aggregated over different time scales. An example for
the aggregate Research Institution e-mail dataset was pro-
vided in the project milestone, and in Figure 1 we consider
the lens plot for the aggregate meme tracker data. Each
point on each plot represents the number of items received
in the time unit corresponding to this plot.

Formally, a lens plot has three parameters: minScale,
the minimum time scale represented (with temporal dimen-
sions), maxScale, the maximum time scale represented (also
with temporal dimensions), and scaling, the unitless multi-
plicative factor used to “step” from the minimum time scale
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Figure 1: Lens plot for Meme-Tracker data. The
number of memes parsed is aggregated (summed)
over a variety of different time scales. Each point
on each plot is the number of memes parsed on the
web per time unit. Here, minScale = 10 minutes,
maxScale = 100,000 minutes, and scaling = 10.



to the maximum time scale.

An advantage of the lens plot is that it allows us to quickly
and heuristically identify many statistical elements of the
data. First, we can easily identify burstiness or smoothing
in the data. In a naive Poisson model, one would expect
significant variations at the lowest time scales, as we see
in Figure 1(a). However, one would also expect the aggre-
gate traffic to smooth out as the aggregation time scale gets
larger [6]. We see in Figures 1(d) and 1(e) that this is not the
case in aggregate social network traffic. We also observed
similar results in the Enron e-mail dataset and the Research
Institution dataset with both all senders and exclusively the
institution’s senders. Finally, we considered the lens plots of
the activity of individual senders in addition to aggregate,
network-level metrics. Similar results have been observed on
traffic and channel behavior of other networks [6, 10].

Another useful characteristic that we can easily observe
from lens plots is that, when examined closely, they show
nonstationarities that are inherent in human-generated con-
tent due to the natural Circadian and weekly cycles, for
example [8]. For example, a nonstationarity is seen in Fig-
ure 1(c). Although nonstationarities are inherent and can be
easily confused with burstiness, we believe that the bursti-
ness studied here is a separate and important phenomenon.

4.2 Normalized Lens Plot

Although it provides an intuitive picture of a link’s behav-
ior, one challenge that the lens plot introduces for quantita-
tive statistical analysis is the variable units on the vertical
axis. To address this problem, we introduce the mormal-
ized lens plot. Instead of plotting the absolute volume of
messages over different time scales, the normalized lens plot
plots this value as a fraction of the maximum volume of mes-
sages over some fixed window of the values at the same time
scale.

Formally, we use the same parameters as the lens plot—
minScale, maxScale, and scaling. We also introduce a
fourth parameter for the normalized lens plot, maxRange,
defining the number of data points, at the current scale, over
which the maximum is taken for normalization.

An example of a normalized lens plot is shown in Fig-
ure 2, for the same data illustrated in Figure 1 for the Meme-
Tracker network.

4.3 Standard Deviation Vector

As a first-order statistical metric of burstiness over a large
number of time scales, we define the standard deviation vec-
tor, a vector of standard deviations over the time series rep-
resented by the normalized lens plots, with the first element
of the vector corresponding to the smallest time scale. This
is made possible since the unit on the vertical axis is now
normalized. For example, for the plot in Figure 2, the stan-
dard deviation vector s is

0.2934
0.2338
0.1958
0.0923

If the values in the standard deviation vector drop sharply,
this strongly suggests a smoothing time series, such as a
Poisson time series. As we see in this example and in sev-
eral others we investigated, the standard deviation remains
high (almost 10% of the normalized values at the highest
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Figure 2: Normalized lens plot for Meme-Tracker
data. The number of memes parsed is aggregated
(summed) over a variety of different time scales and
then divided by the highest value in a fixed win-
dow of size 10 for the present time scale. Here,
minScale = 10 minutes, maxScale = 10,000 minutes,
scaling = 10, and maxRange = 10.
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Figure 3: Logscale diagram for the Research Institu-
tion e-mail dataset time series, counting all messages
sent by any member of the institution at the resolu-
tion of seconds. The solid blue line are the computed
logscale values y;, the dotted red line is a fit over
part of the data (o = 0.723), including the largest
time scales, the black dash-dot lines are drops in y;
that may correlate to time scales inherent to human
behavior.
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Figure 4: Logscale diagram for the Meme-Tracker
dataset time series, counting all memes posted at
the resolution of seconds. Same conventions as in
Figure 3, with a = 0.438 for the fit shown.

time scale), strongly suggesting burstiness in the time series.
Again, this metric does not require network-level aggrega-
tion of links and can be used on individual links or smaller
groups of links.

4.4 Wavelet Analysis of Scaling

One traditional method to investigate burstiness in net-
work data, termed scaling in the statistical literature [1],
uses the wavelet-based logscale diagram. Figures 3, 4, and 5
provide examples for the aggregate datasets studied in this
paper. Formally, on the horizontal axis is an octave, or a
base-two time scale of aggregation. Octave 1 corresponds
to 2! = 1 time units, octave 2 corresponds to 2% = 4 time
units, and so forth. On the vertical axis we plot y;, the
logarithm of an unbiased estimator for the variance of the
detail wavelet transform at scale j [1]. The slope of the
asymptotic domain of the logscale diagram (i.e., the region
including the largest time scale) is called « can be used to
make conclusions regarding the type of scaling present in
the data.

Although a logscale diagram can always be used to provide
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Figure 5: Logscale diagram for the Enron e-mail
dataset time series, counting all memes posted at
the resolution of seconds. Same conventions as in
Figure 3, with a = 0.832 for the fit shown.

a value for «, we must be careful in making a conclusion
about what scaling properties are present in the input time
series. For example, if the logscale diagram is best fit with
two separate lines over different sets of octaves, then the
data exhibits biscaling [1]. As another example, a logscale
diagram for data generated uniformly at random will have
a slope of @ = 0 over most time scales.

While the logscale diagram method is considered to be
statistically robust against non-stationarities [1], such phe-
nomena in the data can still affect the results; this is appar-
ently what we see in the examples for the present data.

Finally, we note that we can take a logscale diagram of any
time series, whether raw data, aggregated data, or normal-
ized data, such as the normalized lens plot at a certain scale.
Furthermore, we can also consider the logscale diagram as
a vector of a small number of values that can capture rich
details about the behavior of a link in a compact fashion.

5. DISCUSSION

The time series analysis conducted leads to several con-
clusions regarding social networks and suggests methods for
analysis.

5.1 Natural Time Scales in Logscale Diagrams

In Figures 3, 4, and 5, we see interesting and recogniz-
able behavior arising despite the significant transformation
of data performed to derive these plots. In particular, for
all three social networks studied, we see major declines in
y; at the octaves j = 16, 19, and 21 where these scales are
visible. In fact, these are essentially the only major declines
in y; except for octave j = 22 for Figure 5, which has a very
large error bar since it was computed using few datapoints
as the time scale is very large.

The octave j = 16 corresponds to 2'6 seconds = 0.75 days.
This is as close to the “one-day” period as can be seen on
a base-two time scale. Similarly, j = 19 corresponds to
219 seconds = 6.07 days, the closest period to “one-week”
as can be seen on a base-two time scale. Finally, j = 21
corresponds to 22! seconds = 24.3 days, the closest period
to “one-month” as can be seen on a base-two time scale.

There are clear stories for non-stationarities at the day-
and week-long scales. Thus, this may be a potential ex-
planation for the drop in the variance of the detail wavelet
coefficient which is represented by y;. At the month-long
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Figure 6: Probability distribution of e-mail interar-
rival time over the aggregate Research Institution
dataset.

time scale, the story to support non-stationarities is not as
clear; perhaps this has to do with holidays that occur ap-
proximately monthly. However, it is interesting and infor-
mative to see these natural human time partitions arise out
of the analysis of time series data of human behavior with-
out explicitly considering the periodic nature of these time
series.

5.2 Distribution of Interarrival Time in E-mail

In Figure 6, we plot the distribution of the interarrival
time over the aggregate research institution e-mail network.
This plot appears to have a heavy tail with some noisy com-
ponents, as suggested by the previous work [3, 8, 14]. The
exact distribution of this curve has been under some dis-
pute, originally believed to be a power law (potentially with
exponential cutoff) with a slope of —1 for e-mail and —3/2
for postal mail [14]. Further evidence has suggested that
the distribution is actually lognormal, with nonstationarity
elements of human behavior (in particular daily and weekly
cycles) [8]. We fit a power law to our overall distribution
with a slope of —1.93 using Clauset, Shalizi and Newman’s
estimator [2]. However, it is more likely that the distribu-
tion illustrated in Figure 6 fits a double Pareto lognormal
distribution [9, 13].

5.3 Applications to Local Analysis, Network
Structure, and Information Propagation

The statistical methods developed provide an elegant frame-
work to compactly summarize the availability characteristics
of a link—in particular, the standard deviation vector and
logscale diagram, which can also be considered a vector, pro-
vide a summary to thousands of numbers in the lens plots.

A basic capability that these measures provide network
researchers is the ability to categorize links as bursty, as
the previous examples in this paper demonstrate, or stable,
such as a link whose usage does not change substantially
over time. An example of a stable link is one that is used in
an purely oscillatory fashion corresponding to weekly, daily,
and yearly patterns in human behavior. Another example is
a link that is never used.

We can generate these vectors, and perhaps the dichoto-
mous conclusion of burstiness versus stability, for activity
originating from nodes or along particular links, thus allow-
ing for clustering and correlation analysis. Figure 7 gives an
example of how we can label a graph using these measures.

Bursty Bursty Mixed \  stable
node
\ edge QStable node
A}
\
Bursty \ Stable
edge \ edge
S o - —_——
Bursty edge
Bursty Q Mixed
oo node

Figure 7: Example of application of statistical mea-
sures to network-level reasoning. In this figure, each
edge is labeled in regular type with either a “bursty”
or “stable” characteristic, based on the standard de-
viation vector or logscale diagram. In turn, each
node is labeled in boldface type as “bursty”, “sta-
ble”, or “mixed” based on its incident edges. The
dotted line shows a possible clustering of this graph
based on these measures, with parts of the graph to
the left and below the dotted line being bursty, and
parts of the graph to the right and above the dotted
line being stable. This illustrates one form of spatial
correlation in this example.

There are several particular questions that can be an-
swered using these measures:

Spatial Correlation. It is possible that links behave
similarly to other links that are close to them, by some mea-
sure of distance. Such behavior is known as spatial correla-
tion. The dichotomy of burstiness or the statistical vectors
proposed allow us to check for spatial correlation, defining
distance from the networks perspective, such as a number of
common friends distance measure. Figure 7 shows an exam-
ple of partitioning a network based on spatial correlation.
Clustering also follows naturally from spatial correlation.

Information Flow over Time. As links turn on and
off, information may be transmitted between nodes at some
times but not at others. Knowledge about when information
can flow in the network can allow for a more detailed analysis
of traditional information flow problems, such as information
cascades.

6. MODEL FOR BURSTY LINK PATTERNS

We now consider a model that captures the qualitative be-
havior of individual links in the Research Institution e-mail
network. Algorithm 1 provides an overview of the algorithm
used to capture this model. Essentially, this algorithm takes
a synthetically-generated bursty trace [10] ¢ and processes
it, adding a random process at the time scale of size 2 units,
based on the seed value from the overall trace. Thus, the
output time series is twice as long as the input time series.

Figure 8 provides a preliminary evaluation of this model.
We see that long-term trends are correctly captured, but
that the real data has some higher variation in y;, possibly
due to non-stationarities that are inherent to human be-
havior. A potential extension to this model is introducing
nonstationarities, such as multiplying the time series by sine
wave, to increase the precision of the results.



Data: A bursty time series ¢ with o > 0 for all or most
time scales, including the largest scale.
Result: A time series ¢’ with the qualitative logscale
characteristics of representative e-mail links.
n = 2;
foreach Element in t do
r := 1+ randn()/n; //randn() produces random
number from standard normal distribution
filler :=[r,7];
t'n-i+1:n-(G+1)]:= filler. xtrace(i + 1); // *
is elementwise multiplication
end
return t';
Algorithm 1: Algorithm to model behavior on individual
network links.

7. CONCLUSIONS AND FUTURE WORK

In this paper, we considered statistical techniques to model
time-variations in social network links, possible implications
and methods to apply these metrics to networks, and pro-
posed a possible technique to model such time variations.

In future work, we hope to extend the various applica-
tions to network structure such as temporal variation and
information flow, thus building on the ideas proposed here.

8. ACKNOWLEDGEMENTS

I appreciate extensive discussions with Jure Leskovec, Simla
Ceyhan, and Borja Peleato.

9. REFERENCES ,
['1] P. Abry, P. Flandrin, M. Taqqu, and D. Veitch.

Wavelets for the analysis, estimation and synthesis of
scaling data. Self-Similar Network Traffic and
Performance Evaluation, pages 39-88, 2000.

[2] A. Clauset, C. Shalizi, and M. Newman. Power-law
distributions in empirical data. SIAM Review,
51(4):661-703, 2009.

[3] J. Eckmann, E. Moses, and D. Sergi. Entropy of
dialogues creates coherent structures in e-mail traffic.
Proceedings of the National Academy of Sciences,
101(40):14333, 2004.

[4] B. Klimt and Y. Yang. The enron corpus: A new
dataset for email classification research. Lecture notes
i computer science, 3201:217-226, 2004.

[5] G. Kossinets and D. Watts. Empirical analysis of an
evolving social network. Science, 311(5757):88, 2006.

[6] W. Leland, M. Taqqu, W. Willinger, and D. Wilson.
On the self-similar nature of Ethernet traffic
(extended version). IEEE/ACM Transactions on
Networking (ToN), 2(1):1-15, 1994.

[7] J. Leskovec, L. Backstrom, and J. Kleinberg.
Meme-tracking and the Dynamics of the News Cycle.
In Proceedings of the 15th ACM SIGKDD
international conference on Knowledge discovery and
data mining, pages 497-506, 2009.

[8] R. Malmgren, D. Stouffer, A. Motter, and L. Amaral.
A Poissonian explanation for heavy tails in e-mail
communication. Proceedings of the National Academy
of Sciences, 105(47):18153, 2008.

[9] W. Reed and M. Jorgensen. The double
Pareto-lognormal distribution-a new parametric model
for size distributions. Communications in
Statistics—Theory and Methods, 33(8):1733-1754,
2004.

[10] T. Rusak and P. Levis. Burstiness and scaling in the
structure of low-power wireless links. ACM

Logscale Diagram, N=10 [(11.12)= (13,21), a-est=0.464, Q=0], D-init

2 4 6 8 10 12 14 1 18 20
Octave j

(a) Logscale diagram from a representative indi-

vidual node (sender) in the Research Institution

E-mail network.

Logscale Diagram, N=10 [(11,12)=(11,21). a-est=0.37, Q=0], D-init

2 4 6 8 10 12 14 16 18 20
Octave j

(b) Logscale diagram from another representative

individual node (sender) in the Research Institu-

tion E-mail network.

Logscale Diagram, N=10 [(j j,)= (14,19), a-est=1.69, Q=0.025291], D-

24

22

201
Y,

181

161

141

2 4 6 8 10 12 14 16 18
Octave j
(c¢) Logscale diagram resulting from the pro-
posed model.

Figure 8: Evaluation for the model proposed, using
logscale diagrams. The model can capture the qual-
itative biscaling behavior, i.e., a small positive slope
followed by a steeper positively sloping section of
the logscale diagram.

(11]

(12]

(13]

(14]

SIGMOBILE Mobile Computing and Communications
Review, 13(1):60-64, 2009.

T. Rusak and P. Levis. Physically-based models of
low-power wireless links using signal power simulation.
Elsevier Computer Networks, 2009.

S.-W. Seong, M. Nasielski, J. Seo, S. H.

Debangsu Sengupta, S. K. Teh, R. Chu, B. Dodson,
and M. S. Lam. The Architecture and Implementation
of a Decentralized Social Networking Platform. In
submission, October 2009.

M. Seshadri, S. Machiraju, A. Sridharan, J. Bolot,

C. Faloutsos, and J. Leskovec. Mobile call graphs:
beyond power-law and lognormal distributions. In
Proceeding of the 14th ACM SIGKDD international
conference on Knowledge discovery and data mining,
pages 596-604, 2008.

A. Viézquez, J. Oliveira, Z. Dezso, K. Goh, I. Kondor,
and A. Barabdsi. Modeling bursts and heavy tails in
human dynamics. Physical Review E, 73(3):36127,
2006.



