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ABSTRACT
1. INTRODUCTION

The university is a fundamental social institution. It is a
haven for research and is where the next generation gets
educated. Gaining knowledge of its properties and under-
standing how it functions are thus of inherent value to so-
ciety. In our project, we analyzed Stanford’s academic net-
work, where faculty members are vertices and edges between
faculty members represent academic relationships like pub-
lication co-authorship, being on the same dissertation com-
mittee, and being on the same grant.

Our motivation for studying this particular network, aside
from its inherent social value, is that it has several interest-
ing features from a network analysis standpoint. Firstly, it
is the prototypical example of a hierarchical network. Sec-
ondly, there are many different relationships between people
in the network; essentially there are many different networks
that co-exist on the same underlying vertex set. Finally, our
data has a strong temporal element since we have yearly
snapshots of each network over the period from 1994-2007.

Our project is divided into three main goals. The first goal
is to discover the community structure in the network. Its
hierarchical structure is well-known, but how well does the
activity of the network conform to the university’s official
divisions? Are there more coherent groups than the fac-
ulties? We applied graph clustering techniques to separate
the network into natural clusters. With this partitioning, we
quantify how isolated or connected certain fields of study are
from the others, and how weak or strong interdisciplinary
collaboration is between specific departments. The tempo-
ral nature of our data made this even more interesting; we
quantify how collaboration varies over time. Our second goal
is to verify if Burt’s theory of structural holes apply to the
university setting. Are faculty who fill structural holes more
successful researchers? Finally, the third goal is to briefly
explore if we can leverage the many different edge types we
have to predict grant proposal success.
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1.1 Related Work

1.1.1 Structural Holes and Good Ideas

The theory of structural holes was pioneered by Ron Burt
[1, 4, 3]. He found that people who fill structural holes
in networks derive social capital from their advantageous
position. In his work, Burt proposes “network constraint
measures” to detect hole signatures and thus identify struc-
tural holes. His studies were done in commercial settings (in
[3], he analyzed a large electronics company), with informa-
tion gathered from questionnaires. In this paper, he gave
evidence that people who fill structural holes accrue vari-
ous benefits by showing correlation between his constraint
measures and higher compensation, promotions, and good
ideas.

1.1.2 Academic Networks

The analysis of academic networks has been largely focused
on citation graphs, but we are not aware of any previous
work that focus on a single institution.

1.2 Data

Our networks are of the following form: faculty members
are vertices and edges are academic interactions. We used
five edge sets: PubCoAuthor is publication co-authorship,
DissCommCoMember is being on the same dissertation com-
mittee, GrantAwarded is being on the same successful grant
proposal, GrantRejected is proposing a grant which was re-
jected, and finally we call the union of the above edge sets
Combined. The networks are yearly, from 1994 to 2007. We
created graphs for each edge set per year and cumulatively.

The data was put together for the Mimir project, which
studies the flow of knowledge/ideas in an academic network.
We used the JUNGI7] network package in our work.

2. NETWORK CHARACTERISTICS
2.1 Basic statistics

The first phase of our project, like any network analysis
project, was to analyze the basic statistics and properties
of the overall network. As mentioned in Section 1.2, our
“network” is actually a collection of networks over the same
underlying vertex set and across many years. In this section,
we’ll recap the basic network characteristics that give a basic
summary of the macroscopic properties of our networks.

As expected the degree distribution in our networks follow
power laws. Since our data is small, the log-log plots of the



Network Year | |V| |E| Density Avg C.C. | Size of GC | «
PubCoAuthor 2005 | 1779 | 1338 | 4.23 x10™* 0.116 558 1.79
PubCoAuthor All | 2832 | 9804 | 1.23x107° 0.1744 1816 1.64
DissCommCoMember | 2005 | 1779 | 1564 | 4.94x10~* 0.248 662 1.61
DissCommCoMember | All | 2832 | 10881 | 1.36x107° 0.269 1655 1.48
GrantAwarded 2005 | 1779 [ 377 1.19x10°* 0.0564 20 1.52
GrantAwarded All | 2832 | 4137 | 5.158x107 7 0.2017 920 1.63
GrantRejected 2005 | 1779 | 592 1.87x1077 0.0794 134 1.55
GrantRejected All | 2832 | 5097 | 6.356x10~7 0.198 1037 1.59
Combined 2005 | 1779 | 5281 1.67x107° 0.350 1262 1.62
Combined All | 2832 | 28022 | 3.5x107° 0.353 2521 1.44
Table 1: Basic Network Statistics
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that academic networks are hierarchical, and hence more
“cliquish” than other networks. In such cases, one would
expect a smaller giant component.

One peculiarity of the Stanford academic network that in-
fluenced our results is the following fact: of all Stanford
professors, a full 45% are in the Medicine faculty! In partic-
ular, the giant component in many of our networks is almost
exclusively made up of the School of Medicine.

The basic statistics of our networks are shown in Table 2. |V|
is the number of vertices, |F| is the number of edges, density
= |E|/|V]?, Avg C.C. is the average clustering coefficient,
Size of GC is the size of the giant component, and « is the
power law coefficient for the degree distribution.

2.2 Network similarity

Since our project is an analysis of many related networks, we
calculated various measures to quantify how the networks
are related to each other. We calculated vertex and edge
overlap between networks of difference edge type and for
networks with the same edge type over time. The vertex
overlap from one year to the next is consistently between
90-95%, meaning the vertex overlap between two networks
separated by m years is around 0.93". The edge overlap
over time for a particular network follows an intuitive decay
pattern, as shown in Figure FIG. The number of common
edges seems to fall off exponentially with time until it settles
at a relatively low stable state.

Figure 1: Edge overlap decays as a function of time

2.3 Nested core periphery

Following Leskovec et al.’s work on detecting community
structure [5], we tried to determine whether our networks
follow the nested core periphery structure that they discov-
ered in many real-world networks. Our networks’ small size
prohibited us from exhibiting the downward-then-upward-
sloping Network Community Profile plot characteristic of
the nested core periphery structure (the upward-sloping part
wouldn’t show up, since it only happens beyond a certain
threshold size). However, “whiskers” are crucial to the def-
inition of the nested core periphery structure and they can
be found even at the small network sizes we are dealing with,
so we focus on them.

Leskovec et al. observe that whiskers have a surprisingly sig-
nificant effect on the community structure of real networks,
and the same is true for our networks. In particular, our
networks all (except for GrantAwarded, which is too small
to be meaningful) consistently have much larger 1-whiskers
than their rewired counterparts. We also empirically observe
that whiskers were very often the best clusters.

3. CLUSTERING
3.1 Identifying Community Structure

Our first major goal was to discover the community struc-
ture of the network. It is common knowledge that univer-



10
&= Rewired Network
== Original Network

108

310

10F

1 o X 1(‘] X " " 10
Whisker Size

Figure 2: Our networks have larger 1-whiskers than
their rewired counterparts

sities are hierarchically structured — indeed, they are the
prototypical example of hierarchically-structured networks.
Faculties form the top-level breakdown of nodes into clus-
ters, then these faculties further break down into depart-
ments, and different groups often make up the departments.
The main question we wish to address in this section is: do
the interactions exhibited in the Stanford academic network
follow the intuitive pattern described above? In other words,
do the “natural” clusters in the network correspond to the
different faculties and/or departments of the university? If
so, this would be a rigorous quantitative confirmation that
the structure of the university is well-described by the uni-
versity’s official divisions; if not, then depending on the ex-
tent to which the network clusters differ from the official
divisions, there exist more coherent communities than those
explicitly imposed by the university system.

As we learned in class, the Girvan-Newman [6] algorithm is
naturally suited to hierarchical networks; therefore we used
it to cluster our networks. Since Stanford has approximately
80 different departments, the departmental-level clustering
is too fine-grained to give meaningful clusters. Therefore,
we compared the faculty-level clustering (there are under 10
faculties) with the clustering found by the algorithm. The
number of clusters found by the Girvan-Newman algorithm
depends on the number of edges removed, therefore by vary-
ing this parameter we got clusterings at varying levels of
granularity. We selected clusterings that contained around
the same number clusters as there are faculties for a fair
comparison.

We clustered only the giant component to avoid having clus-
ters that are groups of many small connected components,
since these have little value in reflecting the community
structure of the network. The giant component typically
comprised around 40% of the network.

We used the standard measure of conductance to evalu-
ate the clusters found. Although we were aiming to find
around 5-10 clusters with the Girvan-Newman algorithm,
we still usually had a few candidate clusterings which sat-
isfied this constraint to choose from. Aggregating the con-
ductance scores into a single statistic reflecting the quality
of the clustering is a non-trivial problem, so to select the

Table 2: Average Conductance Scores

Network Faculty | Graph
DissCommCoMember 1995 1.91 0.13
DissCommCoMember 2000 1.29 0.05
DissCommCoMember 2005 1.13 0.127

Combined 1995 2.55 0.19
Combined 2000 2.39 0.22
Combined 2005 1.903 0.191

final clustering for a given network we ended using a blend
of heuristics and manual decisions. The heuristics we used
were as follows. Let C be the set of clusters (which are them-
selves sets of nodes), and let a(C') denote the conductance
of cluster C. Then let M = maxcec a(C) be the largest
conductance over all clusters in the clustering. We empir-
ically identified a low threshold 7', such that if the largest
conductance was below this threshold (M < T), the clus-
tering was usually very good. We always ran the algorithm
for as long as this max value stayed below 7. The second
heuristic was that after many trial runs, we noticed that
there was usually a sharp threshold between good cluster-
ings and quite bad clusterings; the decline was quick and
steep as opposed to slow and gradual. Therefore, to save
time we stopped the algorithm if the average conductance
score of the clusters grew by 40% (determined empirically)
in any one step (where one step corresponds to removing 5
edges in the Girvan-Newman algorithm). The table above
compares the average conductance scores of the faculty clus-
tering versus those of the graph clustering (“faculty” means
the explicit faculty clustering and “graph” means the clus-
tering found by the algorithm).

3.2 Quantifying Interdisciplinary Work

Having identified, analyzed, and visualized both the official
academic clusterings and our computed graph clusterings,
our next step was to use this information to quantify how
much interdisciplinary work is happening at the University,
and between which departments. Interdisciplinary work has
been strongly emphasized in the past few years, especially
at Stanford. Does the data support the rhetoric? In this
section, we use our work in clustering described in the pre-
vious section to quantify the interdisciplinary work being
conducted at Stanford. A main point of this section is to
leverage the temporal nature of our data: we are lucky that
our data provides us with not only a snapshot of the Stan-
ford academic network, which is interesting in itself, but it
also provides us with several snapshots over time so we can
analyze the evolution of the network.

Concretely, for every pair of clusters, we calculate the num-
ber of links between them divided by the total number of
possible links. This ratio is an approximation of how much
the two clusters collaborate. To aggregate these numbers
into an overall statistic for a network, we simply calculate
the total number of links crossing any cut between clusters
and divide by the total number of links that could have
crossed a cut. This is a useful summary statistic to capture
how much the academic groups collaborate with each other.
We calculate these statistics using both the faculty cluster-
ing and the discovered graph clustering. We focus mainly on
interdisciplinary coefficients derived from the faculty clus-
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Figure 3: Interdisciplinary coefficient for all net-
works over all years

tering, since the clusters there all have intuitive meaning.
However, the interdisciplinary coefficients derived from the
discovered graph clusterings, although less intuitive, are still
relevant: the amount of “interdisciplinary” work between
these clusters is a lower bound on how much different groups
collaborate. If even the most “cliquish” clusters we can find
are still collaborating with each other a lot, then there exists
no way to cut the graph so that few edges cross the cut, and
so work in Stanford is “well-mixed”.

In Figure 3 we plot our interdisciplinary coefficient for all
networks over all years for the School of Medicine and School
of Engineering. Interestingly, the PubCoAuthor coefficient
quadruples from 2001 to 2007, meaning that collaboration
between these two departments quadrupled in 6 years!

4. STRUCTURAL HOLES
4.1 Structural Holes

As we saw in class, structural holes are “the ’empty space’
in the network between two sets of nodes that do not other-
wise interact closely.”. Ron Burt[1, 4] investigated the social
capital that accrue to people who span structural holes, and
showed that they tend to receive increased benefits through
higher salaries, promotions, and production of good ideas.
The main question we seek to answer in this section is: do
the more successful Stanford faculty occupy these structural
holes within Stanford?

4.2 Faculty Success

Burt’s work correlated his structural hole measures with
faster promotions, salaries, etc., which are reasonable mea-
sures of success in the company context. But what kind of
success measure is applicable to the academic setting? H-
index, tenure, grant success, salary, promotions, number of
publications?

The H-index would be ideal, but unfortunately individual
publication and citation data is not available. Neither are
salary data and promotions. Tenure is also reasonable, but
we don’t have data on why people leave the network and
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Figure 4: Graph Disintegration on combined net-
work 2007

assuming everybody who left the network did so because
they didn’t get tenure is susceptible to false negatives, as
faculty might leave to go somewhere else for any number of
reasons. We elected to use grant success rate as a proxy
for faculty success because we have ample data (over 22K
unique grant proposals), which in any case encompasses a lot
more of the faculty than tenure does, and varies interestingly
over time, whereas tenure is a once-in-a-lifetime decision.

4.3 Measures

Burt describes five measures: constraint, aggregate con-
straint, effective size, efficiency and hierarchy. Constraint
measures the extent to which your access to information is
constrained by your neighbors; lower constraint means more
structural holes around you. Aggregate constraint [2] takes
into account size (Herfindal index), density and hierarchy;
again, lower values indicate more nearby structural holes.
Effective size is the amount of non-redundant contacts you
have; large effective size means more opportunities for struc-
tural holes. Efficiency is the ratio of effective size to degree.
Hierarchy measures how much constraint is concentrated in
a single relationship.

4.4 Approach

Our approach to answering the main question of the section
was two-fold. Firstly, we disintegrated the giant component
by removing faculty in descending “structural hole-ness” us-
ing the measures described above. Intuitively, if this breaks
the graph apart faster than other methods then significant
structural holes exist in the network.

Secondly, we plotted each structural hole measure versus

grant success rate for each network and produce a line of
best fit to see if there was any correlation.

4.5 Results
4.5.1 Graph Disintegration
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Figure 5: Constraint distributions for each grant
success bins (combined network, all years)

Figure 4 shows the measures', along with random node re-
moval and removing by degree. This graph was representa-
tive of the results as a whole.

What is noticeable is that effective size produces the fastest
network disintegration, followed by disintegration by degree,
then the constraint measure. This indicates that the struc-
tural holes do exist in the graph, since removing those who
bridge them first breaks the graph apart the fastest. No-
tably, removing by effective size even beats removing nodes
by degree.

Our plots show that there is basically no correlation between
grant success rate the structural hole measures. To see how
the constraint measures were distributed, we binned nodes
according to their grant success rate in 10% intervals, and
produced a box plot. As shown in Figure 5 the distribution
of each bin is similar, thus showing that there is no correla-
tion between grant success rate and constraint. Figure 5 is
representative of most graphs.

There are two main explanations for these results: (1) grant
success rate is not a good proxy for faculty quality, and (2)
the structural hole argument for social capital does not apply
to academic networks.

Burt [3] has argued that the main mechanism by which peo-
ple gain social capital from bridging social holes is broker-
age. These people control the flow of information between
two far-apart parties and thus can use this as leverage for
potential benefit. This explanation is more plausible in a
company context than in a university context in our opin-
ion. However, Burt has also argued and shown that people
who bridge structural holes are “more at risk for being hav-
ing good ideas”; which seems applicable to the university
setting.

The first explanation, that grant success rate is not a good
proxy for faculty quality, is also possible. We assume that
faculty mostly only apply for grants they wish to receive,
but there is anecdotal evidence that this not always the case

! Aggregate constraint was extremely similar to constraint
and was thus omitted.

(e.g. applying for multiple grants and wishing to receive
some of them, but not all). Grant success rate is also affected
by many things, and can vary widely depending on faculty,
funding agency, etc. However it still seems that grant success
rate should be some indicator of the quality of a researcher.

It is thus unclear which of these two explanations is cor-
rect and more experiments will need to be run to conclude
that bridging structural holes is not beneficial in academic
networks. In particular, other measures of faculty quality
should be used to obtain a compelling answer.

5. GRANT PREDICTION

Since the Mimir publication data is incomplete, we were
unable to pursue our original idea of predicting edges in
the grant network from edges in the paper network. In its
place, we tried to predict whether grants would be accepted
or rejected. We have 22,000 grant proposals with a roughly
an even split of approvals and rejections.

5.1 Baseline Features — Grant Signature
Our baseline feature set is a collection of grant features that
we extracted entirely from the proposal. It is comprised of: a
Bernoulli bag of word model on the project title, a Bernoulli
bag of word model on the sponsoring organization, the pro-
posed amount, the proposer’s faculty and department, and
the year.

5.2 Network Faculty Features

The following was extracted for each faculty member: five
structural hole signature measures[1]: aggregate constraint,
constraint, effective size, efficiency, hierarchy; barycenter
value?;random walk betweenness value®; betweeness central-
ity?; closeness centrality®; eigenvector centrality®; clustering
coefficient; degree; radius one and two features: number of
tenured and untenured links, number of awarded and con-
tinuing grants, number of rejected grants, number of grant
and publication edges that overlapped, number of publica-
tions, neighbour edge incidence; and cumulative weighted,
unweigted and average weight edge incidence.

Note: Our edge weights represent the number of interactions
that the faculty had together (e.g. an edge weight of 3 in
PubCoAuthor 2007 means that the two endpoints wrote three
papers together in 2007). Weighted and unweighted versions
were produced where possible.

5.3 Results

We ran two types of test: (1) training and testing on random
years (not using any cumulative features), and (2) testing on
a particular year and training on all previous years.

We expected tests of the second type to get better with time
(since more training data is being used).

2
3

sum of distances to each vertex

measures the expected number of times a node is traversed
by a random walk averaged over all pairs of nodes

‘how many shortest paths go through a vertex

Sbased on average distance to each vertex

Sthe fraction of time that a random walk will spend at that
vertex over an infinite time horizon
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Figure 6: Top graph shows results of testing on ran-
domly intermingled years. The bottom shows the
testing on all years, training on the previous years.

5.3.1 Linear Regression

As seen in the top of figure 6 for the randomly chosen years
test, the addition of the network features increases the clas-
sifier accuracy. However the training accuracy with the
network features indicates that it was beginning to over-
fit. Playing with the convergence parameters did not yield
better results.

Both feature sets do poorly on the year to year test, getting
below baseline until enough training data is available.

5.8.2 Linear classifier

The linear classifier using the Quasi-Newton minimizer for
gradient calculation was chosen next. As can be seen in the
middle two sets of columns at the top of figure 6 the linear
classifier achieves the best results. Interestingly the baseline
feature set performs the best, with the network features ac-
tually hurting testing accuracy. Also the training accuracy
including the network features leads to big overfitting.

The year to year results show that the baseline features per-
form quite well from the start, staying above baseline at the
end. The curve that exhibits a great example of more train-
ing data decreasing training accuracy and increasing testing
accuracy. As for the including the network features, one can
observe that more training data slowly decreases the train-
ing accuracy, but it is still overfitting, and thus the testing
accuracy is not that great. It does come above baseline, but
at no point does it increase the testing accuracy over just
using the baseline features.

5.3.3 Top Features

The top features for all four models were bag of word fea-
tures, except for logistic regression on grants which chose
the proposed total as the most influential feature. Logistic

regression was not able to discern betters weights for the
features than the linear classifier. However, with the addi-
tion of network features, the logistic classifier is then able to
find better weights for these features.

Overall the addition of the network features changes the
top features to be more title oriented. No network features
appear in the top 20 weighted features in either logistic re-
gression or the linear classifier.

5.3.4 Summary

The bag of word model on the grant title and sponsoring
organization does quite well overall. But by just looking at
the logistic regression results one could hypothesize that the
network features can help, but then looking at the linear
classifier the network features actually hurt performance.
This is probably due the overfitting that is happening, not
allowing the model to generalize itself as well as just using
the baseline features. More data or removing features would
be the next approach to see whether the overfitting can be
reduced.

6. CONCLUSIONS AND FUTURE WORK

In this project, we analyzed Stanford’s academic network
and found several interesting results and further avenues
we’d like to explore. We found that there are more coher-
ent groups in the network than the explicit faculty clus-
tering. We quantified the amount of interdisciplinary work
as a function of time, and found that some departments
(for example the Medicine and Engineering) are much more
connected than they used to be. We then gave evidence
that structural holes exist by decomposing the network with
structural hole measures, but didn’t find any correlation be-
tween these measures and grant success rate. This suggests
that the theory of structural holes might not apply in the
academic work setting, although this is something we’d like
to further explore. Finally, we tried to use network features
to predict grant success or failure but were unable to lever-
age them to gain any predictive power over baseline. This
is probably due to the fact that individual grants rely more
on non-network factors, and in the future we’d like to try
predicting the grant success rate of faculty members rather
than predicting individual grants.
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