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ABSTRACT

Previous studies have uncovered a list of interesting proper-
ties that exist in real networks by comparing them to syn-
thetic networks. However, there has been less focus on com-
paring real networks to other real networks. How do Au-
tonomous Systems routing networks compare to social net-
works? How can we tell that one biological network looks
different from other biological networks? How can we quan-
tify how similar two networks are? Omne way to capture
the difference between two networks is to define an "appro-
priate” notion of distance. This project proposes using the
2-norm distance between vectors to capture network similar-
ity. In particular, we present the results of using the 2-norm
distance as a measure of similarity in two cases: a) when
networks are represented as 4 dimensional vectors based on
their 2x2 stochastic Kronecker initiator matrices, b) when
networks are represented as 8 dimensional vectors based
on the frequencies of their 3- and 4-size motifs. We show
that the motif frequencies are able to capture the similar-
ity among the following classes of networks in our data set:
road networks, AS routing networks, biological networks,
p2p networks, social networks, citation networks, collabora-
tion networks and item co-purchasing networks.
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1. INTRODUCTION

A large body of previous work focuses on understanding how
real networks differ from synthetic networks. A common
line of analysis in many of these studies is the following: 1)
Identify a set of structural properties of real networks. 2)
Understand the network evolution processes that would give
rise to such properties. 3) Propose a model that will gener-
ate networks with these properties. [1] is a good example of
this line of analysis. The authors observe that while many
real networks have power-law or (scale-free) degree distribu-
tions, random networks do not exhibit this property. They
then propose the Barabasi-Albert network generation model
that replicates this property. Similarly [4] observes that the

communities in real networks are much tighter at small sizes
than the communities in random networks. Along with this
observation, they propose the forest-fire model to generate
such networks. [2] is a great survey of properties observed
in real networks and the corresponding generative models.

In most of these studies, no distinction is made between var-
ious types of real networks. The term "real networks” keeps
appearing and reappearing in these studies to refer to the
data the authors used in their studies. However, the data
available to the networks community consist of hundreds of
networks, some of which are much different than others. The
motivating questions for this project are: Are there differ-
ent classes of real networks? If so, what are the fundamental
differences between these classes? In order to be able to an-
swer these questions, we have to answer an even higher level
question: How can we compare real networks to each other?
One way to answer this question is to define a notion of
distance between networks as a measure of similarity. Once
we have a notion of distance, we can compute the distances
between each pair of networks and run clustering algorithms
on these distances. Once we compute some clusters, we can
then try to understand the fundamental differences between
them.

In this project we represent networks as vectors in two differ-
ent ways and use the 2-norm distance between vectors as a
measure of similarity. First, we represent each network as a
4 dimensional vector based on the 2x2 stochastic Kronecker
initiator matrix of the network. Second we represent each
network as an 8 dimensional vector, based on the frequen-
cies of the 3- and 4-size motifs in the network. The main
contribution of this project is to show that when networks
are represented as vectors of their motif frequencies, 2-norm
distance is able to capture the similarity of most classes of
networks we use: road, AS routing, biological, p2p, social, ci-
tation, collaboration, and item co-purchasing networks. The
Kronecker matrix representation also captures the similarity
between road networks, AS routing networks, and item co-
purchasing networks but the remaining classes of networks
are not well distinguished from each other.

The rest of this paper is organized as follows: Section 2
describes the two ways we represent networks as vectors,
the two ways we visualize similarity between vectors and
the data set we use in our experiments. In Section 3 we
present the results of our visualization methods. In Section



4, we discuss future work.

2. METHODOLOGY

The outline of our basic methodology is the following: We
experiment with two different ways of representing networks
as vectors: a) We represent each network as a 4 dimensional
vector based on the 2x2 stochastic Kronecker initiator ma-
trix of the network. b) We represent each network as an 8
dimensional vector, based on the frequencies of the 3- and 4-
size motifs in the network. Once we represent each network
as a vector, we take these vectors and visualize the similar-
ity between them in two different ways: a) We reduce the
dimensions of each vector by principal component analysis
(PCA) to 2 and plot these points in 2D. b) We construct
similarity graphs. We used the following 46 networks in our
experiments:

6 AS routing networks

9 p2p file sharing networks (these are actually 9 snap-
shots of the Gnutella network)

6 biological networks

3 road networks of different states in the US

3 academic citation networks

4 academic collaboration networks

e 3 Amazon item co-purchasing networks
e 5 social networks

e 4 web graphs (each is inferred by a different organiza-
tion)

e 3 communication networks

2.1 Representing networks as vectors
2.1.1 Networks as 2x2 Stochastic Kronecker Initia-

tor Matrices

Kronecker graphs [3] are random graphs generated by Kro-
necker multiplication of probability matrices. In [3], the
authors prove that this model is able to capture many prop-
erties that exist in real networks: small diameter, heavy-tails
for the degree distributions, heavy-tails for the eigenvalues
and eigenvectors, and the densification and shrinking of di-
ameters over time. They also present an algorithm called
KRONFIT. KRONFIT takes a target real network G(V, E),
a column size ¢, and a row size r as inputs, and estimates a
¢ X r initiator matrix I, the recursive multiplication of which
will generate a network that will look like the input target
network. They experimentally show that KRONFIT is able
to accurately mimic the properties of large target networks
even by a 2x2 initiator matrix.

Our first way of representing each network as a vector is
the following: For each network N, we compute the 2x2
initiator matrix I by using KRONFIT. Once we have I, we
represent N as a 4 dimensional vector defined as: vy =
(I[1,1],I]1,2],1[2,1],1]2,2]). Each cell in I corresponds to
one dimension in the vector vy. Kronecker initiator matrices
has the desirable property that every cell is a probability and

Table 1: Sample networks as 4 dimensional Kro-

necker vectors
Cell(1,1) | Cell(1,2) | Cell(2,1) | Cell (2,2)
AS-1 0.94 0.65 0.49 0.05
Web-1 0.69 0.67 0.66 0.08
P2P-1 0.72 0.39 0.39 0.53
Soc-1 0.77 0.51 0.50 0.40

IMotf# Mot #2

Figure 1: 2 possible 3-size motifs for undirected
graphs.

has a range of [0, 1]. Thus all the values of vn are between 0
and 1. Table 1 lists sample 4 dimensional Kronecker vectors
and the networks they correspond to.

2.1.2  Networks as frequencies of their 3- and 4-size

motifs

Network motifs [5] are small, fixed-size, connected subgraphs
within a graph. Figure 1 shows the two 3-size motifs for
undirected graphs (there are only 2 ways 3 nodes can be
connected in an undirected graph: a) the open triangle, b)
the closed triangle). In [5], the authors identify some mo-
tifs that occur in real networks at a significantly higher fre-
quency than in random networks. Again the focus of com-
parison in this study is between real networks and random
networks.

We take this idea and use it to represent real networks as
vectors in the following way: We first compute the frequency
of each 3- and 4-size motif. There are 2 3-size motifs and
6 4-size motifs in undirected graphs. We take these 8 fre-
quencies as the values of a vector in 8 dimensions. Each
motif frequency corresponds to a dimension. Note that by
definition all frequencies are between 0 and 1. Moreover
the frequencies of the 2 3-size motifs and the 6 4-size motifs
add up to 1. Table 2 lists some sample 8 dimensional motif
frequency vectors.

2.2 Methods to visualize similiarity between

networks
Once we have our vector sets, we use PCA and similarity
graphs to visualize the distances between the vectors.

2.2.1 PCAin2D



Table 2: Sample networks as 8 dimensional motif frequency vectors

3M #1 | 3M #2 | 4M #1 | AM #2 | 4M #3 | AM #4 | 4M #5 | 4AM #6
AST | 008 0.02 0.75 0.18 0.04 0.0l | 0.005 | 0.0003
Web-1 | 0.79 0.21 0.58 0.07 0.16 0.02 0.11 0.05

P2P-1 | 0.99 0.01 0.41 0.57 0.0 | 0.005 | 0.0007 | 0.00001
Soc-1 | 0.98 0.02 0.48 0.45 0.05 | 0.0005 | 0.006 | 0.002

Given our vectors in either 4 or 8 dimensions, we run stan-
dard principal component analysis to project each vector
onto a 2 dimensional space. Let’s consider the 8 dimen-
sional case as an example. We construct a 46 x 8 matrix
M, where each row is a vector. We extract the mean ma-
trix from M and get D. We compute the covariance matrix
C = D'D of D. We compute the eigenvectors of C' and
the corresponding eigenvalues. We take the 2 eigenvectors
with the 2 highest eigenvalues and project each original vec-
tor onto this space. Once we have the projections, we plot
them in 2D. This gives us a non-rigorous way to see which
networks are close to each other and hence similar. Figure 2
and 3 show the 2D PCA plots for the Kronecker and motif
frequency vectors respectively. We should note that we also
projected onto 3D in a similar fashion but there was not a
significant change in the visual plots for either case. Hence,
we are only presenting the 2D results in this write-up.

2.2.2  Similarity Graphs

Another method to visualize the similarities between net-
works is to construct similarity graphs. A similarity graph
S(V,E) is a graph where each network is a node and there
is an edge (u,v) between two networks if the 2-norm dis-
tance between their vector representations is less than a
given threshold 7. We experimented with different values
for 7, and 0.08 for the Kronecker and 0.05 for the motif fre-
quency vectors gave good clusterings in the computed sim-
ilarity graphs respectively. Figures 4 and 5 show the simi-
larity graphs for these two cases. We note that to keep the
similarity graphs visually cleaner, we are not plotting the
isolated nodes.

3. RESULTS

The main result of this project is that motif frequencies and
the 2-norm distance together capture the similarity amongst
all classes of networks except the web and communication
networks. The similarity graph for this method has 9 con-
nected components corresponding to 8 classes of networks
(2 of the components are p2p networks): road, AS routing,
biological, p2p, social, citation, collaboration, and item co-
purchasing networks. We can see this on the 2D PCA graph
as well. Note that each of these classes are visually very close
to each other and far from other clusters of points. The only
two classes of networks, which motif frequencies are unable
to cluster, are the web and the communication networks.
Web graphs are spread out in the middle of the PCA graph.
One of the communication graphs is on the top left corner,
isolated from other networks. The other is in middle of the
graph, again isolated from other networks. We should note
that the 2D PCA graph for the motif frequency vectors does
not contain 1 web, 2 social and 1 communication networks.
These were the largest networks in our data set and at the
time of this write-up the jobs computing their motif counts
had not completed. These clustering of networks fit our pre-

clustering of these networks very well. We believe this is a
desirable property for any distance measure, as we would
intuitively expect, for example, all road, p2p, and citation
networks to look similar internally and different from each
other.

Kronecker vectors are also able to cluster road, AS routing,
and the biological networks (some of which do blend in with
other networks). However one of the connected components
in the similarity graph contains a wide variety of networks:
p2p, communication, biological, collaboration, citation, and
the web networks. We tried different values for 7 to get a
more refined clustering but observed roughly one of the three
cases: a) When 7 < 0.07, most nodes are isolated and there
is only a few very small connected components. b) When
0.07 < 7 < 0.11, we get a similarity matrix that looks like
the one in Figure 4. ¢) When 7 > 0.11, the similarity graph
looks like a clique, where most networks connect to most
other networks. We think 7 = 0.08 gives a good represen-
tative best clustering (we realize these terms are subjective
and we see this as a shortcoming of our study).

4. FUTURE WORK

One other method that we experimented with but have not
presented in this write-up is representing networks as vec-
tors of their network properties. In this method we com-
pute some network properties for each network and consider
each property as a dimension. In particular we computed
the following 5 properties: effective diameter, average de-
gree of the nodes, average clustering coefficient, fraction of
nodes in the largest connected component, largest singular
value of the adjacency matrix. We then represented each
network as a 5 dimensional vector. This method did not
produce good clusters with our choice of 5 properties. One
problem with this attempt is that, unlike the two represen-
tations presented here, the values for each dimension can
take on a different range of values. However we still think
this is a promising direction. We believe whatever infor-
mation is carried in motif frequencies would be reflected in
some combination of network properties. Returning back to
this direction and experimenting with more properties could
yield good results in the future. Aside from this, we believe
there are 5 immediate further steps we should take in this
study:

e Increasing our data set from 46 to hundreds of real
networks. We also think that adding some random
networks to our data set will give us insights about
the actual meaning of the 2-norm distance.

e Extending the 4-size motifs to 5- and 6-size motifs.

e Computing the average inter-cluster vs. intra-cluster
distances to quantify tight and loose clusters. This
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Figure 2: 2D PCA results for the Kronecker vector representation.
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Figure 3: 2D PCA results for the motif frequency vector representation.



Figure 4: Similarity graph results for the Kronecker vector representation with 7 = 0.08.
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Figure 5: Similarity graph results for the motif frequency vector representation with = = 0.05.




could also give us a method to pick our 7 in a more
principled way.

e Constructing decision trees to compare the precision
of how well the two vector representations (and pos-
sibly the third method we outline above) are able to
correctly label each network.

Understanding how we can compare different real networks
is the first step in discovering different classes of real net-
works. If we can uncover the topology of real networks,
we can start asking more interesting questions: What fun-
damental differences are underlying the different classes of
networks? Which models perform well on which classes of
network? How can we model each class of networks? We be-
lieve these are fundamental questions we should be asking
to understand how networks evolve in the real world.
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