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ABSTRACT
Little work has been done on the characterization of com-
munity structure as opposed to the design of algorithms for
detecting communities. In this work, we perform an anal-
ysis of real-world communities by computing a variety of
features and comparing their distributions to those of fea-
tures computed on randomly generated communities. We
find that real-world communities are more internally well-
connected as compared to their random counterparts, and
that conductance does not necessarily differentiate real from
random communities.

1. INTRODUCTION
Much work in the field of networks has focused on the char-
acterization and modelling of various properties of real-world
networks. This includes properties such as power-law degree
distributions, the small-world property of networks, densifi-
cation of networks, and shrinking diameters [6]. The charac-
terization of these global network properties has led to the
development of network models that are able to generate
new networks that accurately replicate the characteristics of
their real-world counterparts [5]. In addition, recent work
has also focused on discovering the local structure of net-
works, investigating the process of how new connections are
formed in real-world networks [4].

In comparison, far less work has been done on the interme-
diate level of organization in networks, which involves the
characterizion of groups or communities in networks. In-
stead, most work on the community level of network orga-
nization has been focused on algorithms for detecting com-
munities in networks. Such approaches tend to be unsuper-
vised, and focus on finding groups of nodes that maximize
some pre-defined quality score that is thought to accurately
describe the properties of a community (see [2] for a recent
review and discussion).

Ideally, one would like to have a community detection al-
gorithm that could automatically learn the salient charac-

teristics of given sample communities in networks, and use
this information to detect other novel communities. In other
words, a supervised approach to community detection that
uses empirically derived properties of communities to per-
form detection. The key advantage to such an approach
lies precisely in this use of empirically derived properties of
communities. This eliminates the need to incorporate pre-
defined ideas of what communities look-like, that may not
be an accurate representation of reality, into the design of
the detection algorithm.

This work is a first step towards the goal of supervised com-
munity detection, by providing an empirical analysis of var-
ious communities in real-world networks. It may be seen
as an extension of the work in [7], which analyzes commu-
nity structure in real-world networks, where communities
are defined by subsets of nodes with low conductance. In
comparison, we analyze ground-truth communities through
the computation of various features on communities and the
comparison of their distributions with various randomized
baselines. The reasoning behind this approach is that fea-
tures which discriminate between real and randomized com-
munities are those which define a community.

Our analysis yielded greater insight into the structure of a
community, showing that a common intution that a commu-
nity is a group of nodes in a network that are more internally
well-connected than to the rest of the network is not entirely
true. Specifically, we discovered that communities are not
necessarily easier to separate from the rest of the network
as compared to their randomized counterparts and that true
communities are indeed more internally well-connected than
their randomized counterparts. Besides having ramfications
for community detection algorithms based on these assump-
tions of community structure, our discoveries also suggest
new hypothesis about the structure of communities that we
describe in the discussion section.

2. METHODOLOGY
In order to understand the structure of real-world communi-
ties, our approach was to attempt to find various features of
communities that would allow us to discriminate them from
random subsets of nodes. We therefore computed a variety
of features on communities, and then compared them to the
values of the same features but on “randomized” versions of
the communities. We will first describe the features that
we computed and then describe the process of how “ran-
domized” communities were constructed for the purposes of



comparison.

2.1 Features used to describe communities
Let G(V, E) be an undirected graph with n = |V | nodes and
m = |E| edges. A community is then defined to be a subset
of nodes S ⊆ V in G. Then, we may define the following
quantities: the number of nodes in S, nS = |S|; the number
of edges in S, mS = |{(u, v) : u ∈ S, v ∈ S}|; and cS , the
number of edges on the boundary of S, cS = |{(u, v) : u ∈
S, v 6∈ S}|. Also, let d(v) denote the degree of node v.

We computed the following 17 features for each community
S:

• Edges inside: ms, the number of edges inside the
community

• Edges cut: cS , number of edges needed to be removed
to disconnect nodes in S from the rest of the network.

• Expansion: cS
nS

, measures the number of edges per

node that point outside the community

• Internal density: 1− mS
nS(nS−1)/2

is the internal edge

density of the community S

• Conductance: cS
2mS+cS

measures the fraction of total

edge volume that points outside the community [9, 3].

• Normalized Cut: cS
2mS+cS

+ cS
2(m−mS)+cS

[9].

• Cut Ratio: cS
nS(n−nS)

, the fraction of all possible

edges leaving the community

• Maximum-ODF (Out Degree Fraction):

maxu∈S
|{(u,v):v 6∈S}|

d(u)
, the maximum fraction of edges

of a node pointing outside the community [1].

• Average-ODF: 1
nS

P
u∈S

|{(u,v):v 6∈S}|
d(u)

, the average frac-

tion of nodes’ edges pointing outside the community [1].

• Flake-ODF: |{u:u∈S,|{(u,v):v∈S}|<d(u)/2}|
nS

, the fraction

of nodes in S that have less edges pointing inside than
to the outside of the community [1].

• Volume:
P

u∈S d(u), sum of degrees of nodes in S.

• Number of open triads

• Number of closed triads

• Ratio of number of open triads to closed triads

• Clustering coefficient

• Size of largest connected component in S

• Size of the largest connected component as a
fraction of the size of S

Table 1: Statistics for networks used in this work
Dataset # Nodes # Edges # Communities
DBLP 851523 1135266 3050
Flickr 584207 2257488 14051

LinkedIn 7550955 29161896 147
LiveJournal 4847571 42851237 385959

2.2 Random baselines used for comparison
To determine which of the abovementioned features truly
characterizes real communities, we sought to see if the distri-
butions of these features would remain the same on commu-
nities that were randomly generated. To do so, we adopted
the following 3 procedures to generate random communities:

• Network rewiring: We simply keep the node sets
of the communities the same, but we rewire the un-
derlying network using an edge switching procedure
as described in [8]. This results in communities hav-
ing different internal edge structure due to the rewired
network.

• Randomized memberships: We randomly assign
nodes in the graph to communities while keeping the
number of communities, the number of members in
each community and the number of communities each
node is a member of the same as in the original data.
This is achieved using a membership swapping tech-
nique, where we pick two random nodes and swap their
community memberships for a randomly chosen com-
munity from each node.

• Randomized memberships (neighbor constrained):
This is a similar procedure as the randomized member-
ships case, but where nodes are required to be neigh-
bors in the graph. To do this, we pick a random node
from the graph, and then pick one of its neighbors to
execute the membership swap as before.

3. EXPERIMENTAL SETUP
We computed the 17 described statistics on communities and
their randomized counterparts using the 3 methods previ-
ously described, on the following 4 datasets. Basic statistics
of these datasets may be found in Table 1.

• DBLP co-authorship network: The DBLP net-
work is constructed from publications at various Com-
puter Science conferences and journals. Authors are
nodes in the network, while edges are defined by co-
authorship on a publication; each publication gives rise
to a clique on the authors of the publication. Commu-
nities in this network are defined by the publication
venue, e.g., KDD, ICML, FOCS.

• Flickr photo-sharing network: Members of the
Flickr network can post and tag photos. There is also
an underlying social network of friendships, which we
used as the network in this work. Communities are
then defined by co-tagging – two members are in the
same community if they have photos tagged by other
members with the same tag; we did not consider tags
provided by members on their own photos.



• LinkedIn social network: Here we have data on the
underlying social network, as well as community data
defined by the various industries that members work
in. Due to the coarse definition of an industry, the
communities in this dataset tend to be rather large (at
least a few thousand members).

• LiveJournal blogging network: This is the net-
work of bloggers and their friends. LiveJournal has a
concept of communities which bloggers join based on
similar interests. We used these communities as the
ground-truth in this work. This dataset is probably
the most useful of the 4 since the communities are in-
deed user-defined and not defined by us in this work.

We then plotted the average and median values of each fea-
ture versus the community size, as well as the distribution
for each feature over various community size ranges. For
each feature, we manually inspected the plots to determine
if the feature was significant, by checking for a separation
between the points for the original communities and their
randomized counterparts.

4. RESULTS
4.1 Communities may not have low conduc-

tance
As there are many algorithms based on the assumption that
communities are subgraphs that are “easily separated” from
the network (for example, those based on graph-cuts), we
decided to investigate if real communities have this property.
One popular measure used to quantify this notion that a
community is “easily separated” is conductance (see section
2.1 for a more precise definition) – if a community has low
conductance, it is more easily separated from the rest of the
network.

We found that the data does not entirely support this as-
sumption. From the plots of the average conductance versus
community size shown in Figure 1, we observe that the con-
ductance of ground-truth communities in all the networks
is not appreciably different from those of randomized com-
munities in the Flickr and LiveJournal networks, across all
community sizes.

We observe some separation in the DBLP plot, but this is
probably an artefact of the way the network was constructed.
In the construction of the network, all authors in a single
publication are presumed to be connected, resulting in the
network being composed of a network of overlapping cliques.
This could result in a lower conductance score since there
are likely to be more edges inside the communities due to
the cliques. The separation of the LinkedIn plot is also pos-
sibly due to the coarse definitions of the industries which
were used to define communities, and the properties of the
network. As it is a social network used for professional net-
working, people are more likely to have friends within their
own industries, and if the industries are coarsely defined,
then there are few cross-community edges, resulting in a
lower conductance.

4.2 Communities have greater internal connec-
tivity

Figure 3: Plot of the average of the size of largest
connected component in the community as a frac-
tion of the community size, versus community size
for the LiveJournal dataset. Each point in the plot
gives the average fraction over all communities of
the particular size given on the x-axis.

While real communities may not necessarily be more easily
separated from the rest of the network than random com-
munities, they have greater internal connectivity than their
randomized counterparts. This is shown in the plots of Fig-
ure 2, which show the average number of edges inside the
community versus community size. As opposed to the plots
for conductance, here there is a clear separation between the
true communities and their randomized counterparts. In all
4 networks, we see that across all community sizes, the true
communities have a greater number of edges inside. We also
see that communities on the rewired network tend to have
the least number of edges inside, reflecting the fact that
rewiring the network may not be a good random baseline as
it destroys much of the network structure.

In addition, in plots of the size of the largest connected com-
ponent in the community as a fraction of the community size,
we found that real communities have a much higher fraction
of their nodes in the largest connected component as com-
pared to random communities. An illustrative plot is shown
in Figure 3 for the LiveJournal dataset; the observed trend
is similar for the other 3 networks, but the separation was
not as significant.

5. CONCLUSIONS AND FUTURE WORK
In this work we managed to gain a better understanding
into community structure by analysing the distributions of
various features computed on real and random communities.
Our observations suggest that communities may not have
low conductance but have greater internal connectivity. Out
of the 17 measures we computed, most others did not show
any significant signal that could be used to differentiate real
communities from random ones.

Another possible explanation for our observations with re-
gards to the conductance plots is that we are overcounting
the number of edges on the boundary of the network – such



Figure 1: Plots showing the average conductance versus community size. Each point in the plot represents
the average conductance over all communities of the particular size given on the x-axis.

(a) DBLP (b) Flickr

(c) LinkedIn (d) LiveJournal



Figure 2: Plots showing the average number of edges inside the community versus community size. Each
point in the plot represents the average number of edges over all communities of the particular size given on
the x-axis.

(a) DBLP (b) Flickr

(c) LinkedIn (d) LiveJournal



Figure 4: Plot of the average conductance versus
community size in the LiveJournal dataset. Each
point in the plot represents the average conductance
over all communities of the particular size given on
the x-axis.

edges may be between nodes that, with respect to the com-
munity in question, are not in the same community, but may
be together in a different community altogether. Thus, we
should not need to separate these nodes as they are, after
all, in the same community. In other words, we need to
take into account the fact that nodes may be part of mul-
tiple communities, and we should not count edges on the
boundary between nodes that belong together in a different
community. To this end, we have re-computed the measures
with this intution in mind, only counting boundary edges if
their endpoints do not share any community memberships.
Preliminary results show that this is indeed an important
factor, as seen from Figure 4, a plot of the average conduc-
tance versue community size on the LiveJournal dataset. As
compared to the similar plot in Figure 1(d), we observe that
now there is a separation between the real and random com-
munities, especially at smaller community sizes up to about
1000. The corresponding plot for DBLP showed that all
communities had zero conductance once multiple commu-
nity memberships were taken into consideration, showing
that perhaps it is easy to find communities in such a graph
due to the artefacts of graph construction.

In the future, we will analyse more datasets to see if our
observations hold in general. We will then use these obser-
vations to design a community detection algorithm, based
not on preconceived ideas of what a community looks like,
but on actual insight gained from empirical studies such as
this one.
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