
Network Analysis: Final Report

Inferring Social Groups from Email Archives

Sudheendra Hangal
hangal@cs.stanford.edu

(with Diana MacLean, Seng Keat Teh and Monica S. Lam)

http://suif.stanford.edu/dunbar

Abstract
We investigate algorithms to detect groups in a single users
email network. Our goal is to build a practically usable
tool that can mine a users email archives and based on
email communication patterns, infer groups of people in
the users email network. We aim to use this information
for 2 purposes: 1) To seed groups for access control to data
in online social networks and 2) to automatically sort and
select information from different groups in social networks.

1. Introduction
While online social networks continue to enjoy runaway
popularity, a big concern for many users is the relative lack
of usable privacy and security features in these networks.
Privacy settings on popular networks continue to be opaque;
for example many people have exploited the loophole of
unverified regional networks on Facebook to explore other
users information (the default privacy settings allow access
to anyone on the same regional network as the owner).

The relative difficulty of using privacy controls in so-
cial networking sites discourages use of these controls, and
causes two problems: frequently unintentional sharing, and
by extension, reluctance on the part of users to put truly sen-
sitive information into online social networks because they
do not understand exactly who has access to a piece of data.
For example, sensitive information is routinely conveyed in
email messages, including in email attachments; it is un-
likely that such a sensitive message or document would be
shared via a social network site. Email is a natural fit for
such sensitive information due to the transparency of shar-
ing: it is easy to specify exactly who the message is ad-
dressed to, and straightforward to verify.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Copyright © ACM [to be supplied]. . . $10.00

While group-based access control is a natural and flex-
ible technique for controlling access to resources, a partic-
ular problem in practice is the cumbersome procedure of
defining groups. Group-based access control methods have
largely failed to be effective for lay users for this reason.
Consider the time and effort required to classify and main-
tain group labels for a set of 500 friends, a not uncommon
friends set size on Facebook. We propose to bootstrap the
process of defining groups (or friends lists) by mining email
communications to automatically detect likely groups.

2. Requirements
We posit some requirements for a group detection algorithm
in our context. (though we are willing to relax them in case
they cannot all be satisfied at once.) Our input is a series
of messages, typically on the order of several thousand,
each with a recipient list. As a simplification tactic, we will
ignore mailing lists (for now), though it should be possible
to explode mailing lists into the constituent individuals as
input to our algorithm. Our required output is a relatively
small number of groups (say, 10 to 30) that can be presented
to the user for inspection; the user can further tune the
groups with little effort. Similar to the Dunbar number
which is a theoretical cognitive limit to the number of stable
relationships a person can have (the average is about 150),
we speculate that there is a limit to the number of groups a
person can associate with, and this number is likely to be in
the few tens of groups. Some of the features our algorithm
needs are as follows:

• It must support overlapping groups; i.e. a person P can
be a member of multiple groups. This mirrors real life:
P may simultaneously be a fellow school parent and a
soccer buddy.

• The algorithm must attempt to capture the frequency
with which two individuals are co-recipients, perhaps as
some form of edge weight between 2 nodes.

• It must be able to create groups of people who do not
all explicitly appear together in any single message. For
example, if all 3-subsets of the group {A, B, C,D} are

inferred to be valid groups, it should be possible to
derive that {A, B,C, D} is a single, cohesive group.

• The results must be tunable so that, under control of the
user, a few parameters (like cohesion metrics) can be
adjusted, allowing the user to play around with different
settings.

We decided to implement different flavours of the algo-
rithm and run user studies to determine which of the algo-
rithms performed the best from the point of view of the end
user.

3. Related Work
We briefly survey the most related work in this secion.

3.1 Newman’s community detection algorithm
Newman’s community detection algorithm [2] is widely
cited as an efficient group detection algorithm; it defines
a modularity metric Q based on the number of intra-group
edges actually present, less the number that would be ex-
pected if edges occurred randomly. It starts with each node
in its own community and then successively joins commu-
nities in pairs, choosing at each step the join that results
in the greatest increase in Q. While this greedy algorithm
is not necessarily optimal, it has been found to work well
in practice. Newman’s algorithm, as described in the paper,
has a few problems in our setting: First, it is typically ap-
plied to information gathered from multiple people’s data.
Second, it is a form of hierarchical agglomerative cluster-
ing, which classifies people into separate groups and does
not allow a member to belong to multiple groups. Finally,
our experience with using Newman’s algorithm found some
problems with the Q-metric (see discussion later in this pa-
per.)

3.2 Email analysis at HP Labs
Huberman et al’s work [3] is representative of research in
analysis of email networks. They analyzed about a million
email messages sent over a 2 month period in HP Labs.
They reduced this dataset to a graph with 367 nodes and
1110 edges, and extracted 66 communities from the graph.
They conducted some user interviews to determine if the
groups inferred were accurate. The algorithm described in
their paper is based on removing edges using an approxi-
mate measure of betweenness centrality. There are at least
three limitations of their algorithm. The first is that it can-
not model weights between edges (edges are either present
or not based on an arbitrary threshold of 30 messages ex-
changed, with at least 5 messages sent each way). It also
models only person to person edges, thus losing informa-
tion when one person sends a message simultaneously to
3 or more other individuals. Finally, it depends on a global
view of the email network, which is impractical for a setting
such as ours with no organizational boundaries.

4. The Algorithms
In this section we detail our algorithms to generate over-
lapping social groups from an e-mail corpus. In contrast to
much of existing prior work, our approach focuses on ex-
tracting overlapping groups from weighted, egocentric so-
cial networks. Taking a weighted, egocentric approach is
a good fit to the problem space of access control and data
sharing, as globally oriented graphs do not necessarily cap-
ture the nuances of social ties. For example, two people may
know the same group of people, but may have quite differ-
ent tie strengths to the group.

4.1 Overview
Our goal is to propose a small number of groups based on
the email communication pattern, each of which contains
individuals who are socially similar from the user’s perspec-
tive. Intuitively, we think of people as socially similar if we
would share the same information with them. If we were
to assign messages to groups based upon the best fit of a
group to the actual recipient list, we would like to minimize
the number of group members that would have access to
mail on which they were not recipients.

As input, we take a single user’s e-mail corpus and
outputs a set of social groups whose members should be,
in some sense, socially “similar” to one another from the
user’s perspective. Given the input corpus, e-mail headers
are extracted from the user’s sent mail folder (using the sent
mail folder filters out a large quantity of irrelevant mail from
the inbox) and used to compute the individual-group map-
pings.

There are 2 high level steps of our algorithm. The first
generates small, highly cohesive starting groups (which
could also be single individuals) in the e-mail corpus. These
groups comprise of individuals with a high probability of
being together in the same group; notably these groups are
all sets of people who have frequently appeared together
on the same message, above a threshold number of times.
We explore three different algorithms for generating these
starting groups. The second step takes these starting groups
and merges them using Newman’s algorithm. This step ad-
dresses one of the requirements we discussed earlier that
the final groups may consist of individuals who have not si-
multaneously appeared on any message. We discuss each of
these steps in turn below.

4.2 Identities and Entity Resolution
Before performing any grouping, we attempt to “resolve”
all individuals in an email corpus, by identifying different
email addresses or name spellings for the same individual,
since both e-mail addresses and names are prone to change
over time. We handle such drift by unifying and storing
names and email addresses from the input email headers
when either the name or email address matches a previous
entry. Comparisons are case insensitive.

This simple algorithm works well in practice on our data:
perhaps an egocentric network is small enough that the
probability of two distinct individuals having precisely the
same name is relatively low. We did occasionally observe a
problem where we inferred two different identities for one
person if that person different e-mail accounts with different
name spelling, but it happened infrequently enough that
we did not feel the need to use more sophisticated entity-
resolution methods.

4.3 Step 1: Generating starting groups
Our goal in Phase 1 is to generate small sets of co-recipients
that occur more than t times, where t is an occurrence
threshold for the group in the e-mail corpus that renders an
individual or group significant. Currently t is empirically
set to 0.5% of the number of messages, capped to 5. We say
that a group is frequent when its member co-occur in t or
more messages.

There are three different options we consider for this
step.

4.3.1 Option 1: Frequent and similar sets
We compute frequent subsets of message recipients, using a
market baskets algorithm. This algorithm performs multiple
passes over the input, combining ”itemsets” (in our case,
message recipients) already found to be frequent.

Further to occurrence frequency (which is what the tradi-
tional market baskets algorithm deals with), we would also
like these subsets to exhibit strong internal similarity in the
sense that the group members appear frequently with each
other, and infrequently without. For example, if A and B
appear together 5 times, but A and B also appear without
each other 100 times, they are substantially different from
each other.

We measure similarity by extending the traditional Jac-
card similarity metric to apply to more that 2 entities. We
define the Generalized Jaccard Similarity (GJS) of a set of
recipients as the number of messages in which all the mem-
bers of the set were co-recipients, divided by the number
of messages where any one member of the set was a co-
recipient. If Rm is the set of recipients of a message m,
then the similarity of a set S, GJS(S) is computed as:

GJS(S) =
|{m|S ⊆ Rm}|
|{m|Rm ∩ S 6= ∅}|

Thus, the GJS metric ranks socially cohesive sets highly.
The ranking is high if set members appear frequently as
co-recipients in the message corpus and if members appear
infrequently without each other in the corpus. We consider
a subset S similar if GJS(S) is above a similarity threshold
(typically set to 0.1 in our experiments).

Note that both frequency and Generalized Jaccard Sim-
ilarity are monotonic: the frequency and similarity of any
superset are smaller than the frequency and similarity of
a subset. Therefore, any set with insufficient frequency or
similarity can be used to rule out related supersets.

We use a bottom-up algorithm to generate frequent
and similar subsets. Starting with all pairs of frequent co-
recipients, we compare these pairs against each message re-
cipient list and identify the ones that cross the frequency
and similarity threshold. We then create all combinations of
sets identified as frequent and similar, and generate a new
set of candidates, and try to find which of those are frequent
and similar. This process continues iteratively till a fixed
point is reached, and no more candidate subsets are left to
evaluate. For fast performance, we limit the subset size to
below a limit, usually about 6, because the next phase of
the algorithm will combine similar groups in any case. Our
algorithm is a variation on the market baskets algorithm fre-
quently used in data mining [1].

4.3.2 Option 2: Frequent sets
Our second option is to use entire recipient lists as the
starting groups. We just count the number of times the
(sorted) recipient lists occur in the email corpus and use
those as the starting groups.

4.3.3 Option 3: Individuals
Finally, in this option, we take the frequent individuals who
occur in the email corpus and use those as a single-element
groups to start the second step with. This formulation is like
a traditional social network analysis that views people, not
groups as nodes. However, since the second step performs
hierarchical agglomerative clustering, this option rules out
the possibility of the same individual belonging to different
groups eventually. Note that with option 1 and 2, the same
individual could indeed belong to multiple starting groups
(and therefore to multiple groups reported after step 2 as
well.)

4.4 Step 2: Deriving Larger Social Groups
We construct a weighted graph whose nodes are the groups
G1, . . . , Gn generated in step 1, and run Newman’s algo-
rithm to maximize modularity within this graph. Let Mi be
the set of messages whose recipients include all the indi-
viduals in group Gi, and Rm be the individuals who are
the recipients of message m. Then the weight of the edge
between Gi and Gj is:

wi,j =

∑
m∈Mi∪Mj

|Rm ∩ (Gi ∪Gj)|

|Mi ∪Mj | ∗ |Gi ∪Gj |
The edge weight wij , capturing the similarity between

groups Gi and Gj is always in the range [0,1]. The intuition
behind this metric is as follows: if a relatively high propor-
tion of messages including Gi also includes a significant
portion (or even all) of the members from Gj , then Gi and
Gj should be strongly connected. If the overlap is small,
however, then the connection should be weak.

Depending on the option chosen in step 1, we will refer
to the three variations of the algorithm as A1: (Newman-

Avg. Max Min Std. Dev.
Messages analyzed 5147 14988 699 4229
Timespan (months) 49 65 15 18
Unique Individuals 570 970 52 351

Table 1. Email statistics in user study

Frequent Subsets), A2: (Newman-Frequent Sets) and A3:
(Newman-Frequent Individuals).

4.5 Implementation
The algorithms we discuss are implemented as part of
Project Dunbar, an email mining project developed primary
by the author. The CS322 project implemented automatic
group detection from email messages and is integrated into
Dunbar. The author was the primary developer for the al-
gorithms discussed above; Diana MacLean provided help
in refining the algorithms as well as for implementing the
parts in R. We used the igraph package available in R to run
Newman’s algorithm.

5. User Study
We ran a user study of the effectiveness and promise of our
approach with 14 users who were above average users of
email and Facebook for social networking activities and the
sharing of personal data. The setup of the user study re-
quired users to run our analysis on folders they selected
from an IMAP/POP email account (or local files in mbox
format). We then asked them to evaluate the groups gener-
ated by our three algorithms and how accurately they re-
flected their natural social groups.

5.1 Results
Of the 3 algorithms that we have provided to infer a user’s
social groups from email, 9 users found A1 (Newman-
Frequent Subsets) to be the most accurate, while 1 user
chose A2 (Newman-Frequent Sets) and 4 users chose A3
(Newman-Frequent Individuals). All participants thought
the groups identified were very cohesive, especially for A1
and A3. Most people were positively surprised by the accu-
racy of the identified groups. We heard comments like “you
got my core group of friends there”, or “you identified my
family” or “there’s the board of my company!” For most
users, between 20 and 40 groups were reported.

The most common complaint we heard was that occa-
sionally a set of people who were strongly connected among
themselves, were grouped with another person who was pe-
ripherally connected to the group.

We also surveyed users on their use of Facebook’s
Friends List feature with which they can filter their Face-
book social feeds or limit access to their data. The drawback
to this feature is that it requires users to manually create
and maintain these friends lists as their social relationships
evolve. Only 3 users were aware of this feature, and virtu-
ally all our users agreed that the manual work involved in

managing these lists would be a significant deterrent to their
using the lists.

6. Learnings
A frequently used metric for detecting communities in net-
works is the modularity metric, as defined by Newman [2].
The modularity metric Q for a grouping is:

Q =
∑

i

(eii − a2
i)

eij is defined as one-half of the fraction of edges that con-
nect vertices in groups i and j, when i and j are different,
and as the fraction of edges that fall within group i when
i = j (i.e. no one-half factor for intra-group edges). ai

is defined as
∑

j eij . In other words, ai is the fraction of
edge-ends that lie within group i. Therefore, if the network
were rewired randomly, while maintaining each node’s de-
gree, the expected number of edges within group i would be
a2

i . The greedy Newman algorithm successively combines
the 2 existing groups that give the best increase in Q, con-
tinuing till the Q-value stops increasing. The same formula
applies in case of weighted edges, except that the eij matrix
represents the weighted fraction of edges.

The formula above has a problem in that it will al-
ways draw in “whiskers” into otherwise strongly connected
groups. This is because it does not correctly assign prob-
abilities for groups containing only one node. Consider 2
nodes A and B with a large edge weight x and a node C
connected to B with a weight of 1. The Newman algorithm
in this case will first merge A and B. After this step, the Q-
metric for the grouping where group 1 is {A, B} and group
2 is {C} is:

Q = e11 − a2
1 + e22 − a2

2

Given that

a1 = e11 + e12 =
x

x + 1
+

1
2(x + 1)

= 1− 1
2(x + 1)

and
a2 = e22 + e12 = 0 +

1
x + 1

=
1

x + 1

Q =
x

x + 1
− (1− 1

2(x + 1)
)2 + 0− (

1
x + 1

)2

leading to a Q value that is always slightly less than 0.
Therefore, the Newman algorithm will merge C into the
group {A, B}, because the grouping {A, B,C} has a Q
value of 0.

In reality, a1, the expected fraction of intra-group edges
in group 1 should be x

x+1 and a2 should be 0, assuming
self-edges are disallowed. Therefore the modularity of the
original grouping before C is added to {A, B} should also
be 0. The problem with the Q definition is that it does
not account for groups with only one node. Indeed, if we
add shadow nodes for each original node in the graph and
connect the shadow node only to its corresponding original
node, we find that the groups {A, B} and {C} remain
disjoint.

7. Software Release
The software for this project is available for testing by the
interested reader at http://suif.stanford.edu/dunbar. Users
can login to an email server, select some folders and then
click on the groups button to see the results of the 3 al-
gorithms compared in this paper. To alleviate privacy con-
cerns, users can can download the software and run Dunbar
in the privacy of their own machine. (R must be installed on
the local machine for the Newman algorithm to work).

8. Conclusions and future work
We implemented three algorithms for group detection in
ego-centric networks and demonstrated with user studies
that a fairly simple algorithm was able to derive groups
from users’ email corpora. The variation that works best
is one that derives small frequent and similar subsets and
then applies Newman’s algorithm to form larger groups.
We are continuing to refine our algorithm to capture not
only the accuracy of the formed groups, but also ensure that
the derived groups are representative, i.e. cover as large a
fraction of messages and recipients as possible.

References
[1] R. Agrawal, T. Imielinski, and A. N. Swami. Mining associa-

tion rules between sets of items in large databases. In P. Bune-
man and S. Jajodia, editors, Proceedings of the 1993 ACM
SIGMOD International Conference on Management of Data,
pages 207–216, Washington, D.C., 1993.

[2] M. E. J. Newman. Fast algorithm for detecting community
structure in networks, September 2003.

[3] J. R. Tyler, D. M. Wilkinson, and B. A. Huberman. Email as
Spectroscopy: Automated Discovery of Community Structure
within Organizations, pages 81–96. Kluwer, B.V., Deventer,
The Netherlands, The Netherlands, 2003.

