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ABSTRACT

A stochast Kronecker graph presents a generative model for
the social and information networks. By means of EM algo-
rithm with various version of MCMC samplings,we suggest a
way to catch the potential Kronecker structure. This model
allows us to infer how the latent part of graph is organized as
well as to predict how the current graph evolves over time.
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1. INTRODUCTION

The synthetic graph model is essential for many reasons;
for a simple example, it enables to simulate the graph and
predict how it is going to grow. Inversely, in order to reduce
the size without touching the key features, it can be used
summarize or sample the graph.

In history, a lot of attempts to incorporate a probablistic
graph model have been made. Among them, a stochastic
Kronecker graph supplies abundant network features such as
power-law degree distribution, even though it is controlled
by a small number of paramters[2]. Furthermore, it gives
nice intuition that nodes sharing common attributes show
similar tendency of createing connections.

More than all, the Kronecker graph fulfills the purpose of
synthetic graph; it summarizes the graph with a few paramters,
and they are quite stable over time[2]. Because of these
benifits, it is important to find the Kronecker parameters
from the given graph.

We basically propose the Kronecker-fitting algorithm; how-
ever, the parameter estimation is just the tip of the iceberg.

It can not only help us recover the randomly removed part of
graph but also anticipate the graph structure in the future.

In section 2, we clearly define the problem and the approach
of the solution follows it. Section 3 describes what we have
tried and achieved where the fitting algorithm is provided.
Finally, section 4 demonstrates the superiority of our ap-
proach compared to the previous one.

2. KRONECKER ESTIMATION

2.1 Problem Definition

The fundamental goal of this paper is to seek for the Kro-
necker structure in the graph. To state the problem math-
ematically, we want to find the Kronecker initiator © €
RNoxNo for the observed Graph G such that

Omar = arg m(—?x P(G, @)

where P(G;0) is the likelihood of G parameterized by O.
[2] has the same objective function; however, the Kronecker
structure is defined only when the number of nodes is equal
to N¥ for an interger k. Unfortunately, it is impossible for
every graph to satisfy this condition. To overcome this re-
striction, [2] appends isolated nodes until the number of
nodes reaches a power of Ny, what we propose here is to
introduce the latent subgraph the nodes of which are dis-
joint with G in the Kronecker graph. That is, we assume
that G is the observed part in the latent Kronecker struc-
ture. Therefore, what we hope to maximize is the likelihood
of GG over the latent part of the graph, Z, as well as unknown
permutation o.

To distinguish our approach from the original one, we name
each as KRONEMFIT and KRONZEROF'IT, respectively.

2.2 Monte Carlo Expectation Maximization
A general approach for maximization over latent variables is
the expectation-maximization(EM) algorithm, but the plain
EM algorithm would not work well because we cannot de-
rive the closed form of the posterior distribution. Instead,
Monte Carlo EM(MCEM) algorithm[6] might be a good ap-
proach for our problem that sampling from the posterior is
tractable. The skeleton of the EM algorithm is described in
Algorithm A.1 and A.2.

2.3 Sampling from Posterior Distribution
However, it is definitely difficult to sample directly from
the posterior P(Z,0|G,0). Fortunately, the block Gibbs



sampling method is appropriate for this problem because
sampling from the conditional posteriors, P(Z|G, o, ©) and
P(o|G, Z,0), is not difficult by following the procedure al-
ready defined in [2]. The former sampling is a kind of
Kronecker-generating process, while the latter one is a Markov

Chain Monte Carlo(MCMC) algorithm, in the form of Metropo-

lis algorithm in [2]. Moreover, since the posterior distribu-
tion for permutations, P(c|G, Z,©), is unchanged, we are
able to exploit the same proposal process for MCMC. In
other words, what we should focus on is the sampling algo-
rithm from P(Z|G, o0, 0).

The straightforward way is to determine the connectivity
of each latent edge from a coin-toss, for the probability of
each edge is independent of the other edges conditioned on
o and ©. As written in [2], it is intractable because O(|Z|)
time is required and it can be as large as O(N?). There-
fore, we need to make a detour to sample them using the
fast generation of the Kronecker graph. Where sampling
from P(G, Z|o, ©) is trivially achievable, one natural way to
sample from P(Z|G, o, ©) is to use the acceptance-rejection
algorithm. Briefly speaking, we pick edges up according to
the fast Kronecker-generating algorithm as if there were no
distinction between latent and observed parts of the graph.
Then, we throw away the edges in case that they belong
to the observed part. We can repeat this procedure until
obtaining the expected number of edges.

2.3.1 Metropolized Gibbs Sampling

In the previous section, we present tractable algorithms,
but they are not efficient enough. First, the Metropolis
algorithm for permutation requires a proper number of of
warming-up iterations. The number of those steps will un-
doubtedly increases according to the size of graph. Besides,
as mentioned above, it takes O(| E|) time to assign the latent
variable, Z. The efficiency issue arises because those time-
consuming jobs result in only one Gibbs sample. When we
repeat this until achieving enough samples, the total run-
ning time is expected to be very huge. Unless this problem
is resolved, the overall algorithm cannot finish in feasible
time.

As MCMC provides a way to search for Monte Carlo sam-
ples in high dimensions, Metropolized Gibbs Sampling[4]
can be a hint for this problem. When sampling each Gibbs
block, corresponding Metropolis-Hastings algorithm[1] is re-
spectively applied. In other words, Z and o vary little by lit-
tle for every Gibbs iteration in the proposal transition. The
basic algorithm for o does not need to change; however, no
more warming-up is required between two consecutive Gibbs
samples.

In the other hand, a different version of MCMC algorithm
is necessary for Z. It turns out that the simple process that
removes one current latent edge randomly and adds another
one with the original acceptance-rejection algorithm works
pretty well. However, the transition probabilities in both
directions are not same :
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Because of the asymmetric transition probability, the Metropolis-

Hastings algorithm has to be introduced rather than simple
Metropolis algorithm. Fortunately, most of terms are nicely
canceled out; in the result, the accpetance rate is as follows
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where P.(x) represents the probability that the edge z is
connected.

I
£

In most cases, since P. is very small, almost all transitions
would be accepted. The entire modified E step is described
in Algorithm A.6.

2.4 Maximization Step

If we try to calculate the gradient descent step with fixed
samples of Z and o, O (SGibbs (Né“) space is required to
maintain them for Gibbs sample size Saipps. Since the whole
procedure is based on the Monte Carlo sampling, it would be
reasonable to use the stochastic gradient descent step rather
than deterministic one. In order to gain each gradient step
of ©, we resample Z and o’s with ©,4, not with updated
©. In this sense, each gradient update eventually repeats E
step.

In the different point of view, the ECM algorithm|[5] shows
that only several steps of gradient descent algorithm would
be enough. This technique is able to make the overall algo-
rithm more efficient not only in time but also in space. The
pesudocode is described in Algorithm A.7.

3. EXPERIMENTS

We have examined this fitting model for several kinds of
dataset. With regard to the size of Kronecker initiator, ©,
it turns out that a 2 x 2 matrix would be fine[2]. Thus,
in order to simplify the model, we used No = 2 for every
experiment. Where dataset is provided, we compare the
KRONEMFIT to KRONZEROFIT.

Even though the both algorithms are scalable, some evalua-
tion methods are not because, for example, it requires O(N?)
time to compute the log-likelihood over only observed or la-
tent graph. Therefore, for the purpose of practicable as-
sessment, we simluate Kronecker graphs with thousands of
nodes, or select a subgraph from the temporal dataset so
that it should have several thousands of nodes.

Experiments consist of three major parts: we first gener-
ate Kronecker graph with a plausible initiator and measure
many values on that graph and distribution in section 3.1.
Then, the similar tests on real-world graphs are naturally
followed in section 3.2. On the other hand, we are also in-
terested in the evolution of Kronecker structure that the
relate work is accomplished in section 3.3.



Figure 1: Network property plots for simulate
Kronecker graph(N = 1,024). KronEMFit(red-
cross line) seems to have the same network prop-
erties as the true graph(black-solid line). Even
though the number of nodes in KronZeroFit(blue-
circle line) is 1,024, it looks closer to the observed
graph(cyan-solid line) of size 768. The plot of top
left, top right, bottom left, and bottom right in-
dicates CCDF(Complementary CDF) of in-degree,
CCDF of out-degree, singular value, and triad-
participation, respectively.

3.1 Synthesized Kronecker Graph

For the first step, to satisfy the latent setting, we generated
a stochastic Kronecker graph(N = 1,024, F = 2,779,0 =
[0.94 0.55; 0.57 0.15]) and removed some nodes(25% of them)
randomly. In this case, we are able to conjecture that the ex-
pected number of undeleted edges is approximately propor-
tional to the square of the number of observed nodes. This
assumption can be validated to see that the observed sub-
graph has 768 nodes and 1,649 edges. Table 1 describes the
fitting results and various measurements over the graph. In
any subgraph, with any metric, it shows that KRONEMFIT
is closer to the true structure than KRONZEROFIT.

The outperformance can be also observed in various plots
of network properties such as degree distribution. To draw
these figures, we generated Kronecker graphs of size 1,024
with both estimated parameters and then produced features
with them. In some sense, it might be natural since the ab-
solute difference caused by KRONEMFIT is very small. In-
terestingly, KRONZEROFIT seems to capture the observed
graph better, but we should note that the observed graph
has 768 nodes but KRONZEROFIT contains 1,024. It eventu-
ally reveals the aspect of underestimation in KRONZEROF1IT.

To verify better performance in general, we additionally
carried out the same experiments by varying the percent-
age of deleted nodes. Surprisingly, parameters obtained
by KRONEMFIT demonstrate its stability regardless of the
number of removed nodes. Contrastively, KRONZEROFIT re-
sults in larger errors in proprotion to removal percentage as
expected. Figure 2 displays the curves of errors, KL diver-
gence, and log-likelihood against the true parameter.

3.2 Real-World Dataset

The same experiments were taken for real-world network.
We chose the subgraph in the temporal dataset of LinkedIn

Figure 2: Each plot displays each metric (top left :
absoulte error, top right : RMS error, bottom left
: KL divergence, bottom right : log-likelihood) ver-
sus the percentage of node removal in simulate Kro-
necker graph of size 1,024. KronEMFit (red-cross
line) shows steadiness regardless of how much the
graph is removed, while KronZeroFit (blue-circle
line) does not.

so that the number of nodes should be 2,048. As we did
in the previous section, we obtained the observed graph of
N = 1,536 by erasing 256% of nodes randomly.

However, differently from the synthesized graph, it is impos-
sible to know not only what is the true Kronecker parame-
ter but also what is the true permutation. These limitations
make the evaluation process difficult. Most measurements in
table 1 would be invalid due to the lack of true initiator. In
spite of its irrelevance to the true parameter, it is governed
by the true permutation.

In this situation, the expected log-likelihood over the pos-
terior distribution, P(c|T,®), for the true graph 7', might
be an approximate measurment. This can be achieved by
Monte-Carlo sampling, as done in the fitting process. Table
2 is obtained from KRONZEROFIT and KRONEMFIT in this
method. Not surprisingly, KRONEMFIT results in smaller
log-likelihood in any part of the graph than KRONZEROFIT,
so we could assert that KRONEMFIT finds out closer Kro-
necker structure to the true one.

As plotted in section 3.1, several network features are also il-
lustrated in figure 3. Since even more variation exists in the
real network, it is impossible to track its properties strictly.
However, one clear thing is that the curves of KRONZEROFIT
is generally lower than that of KRONEMFIT and hold a lit-
tle lighter tails. Seeing that the true real graph has the
tendency to have heavier tails in many features, we can con-
sider KRONEMFIT as a better model.

This assertion can be explained in a different point of view.
When you look at the figure 3, there exists an additional
(green) line unlike in the figure 1. It indecates TRUEFIT
which is a Kronecker graph extracted from the true graph,
not from the observed graph. It can be regarded as an
approximation of the true parameter. Even in case that
KRONEMFIT causes a little chasm between the real graph,
it produces as almost same property-curves as TRUEFIT.



ABS | RMS | KL | KLo | KLy, LL LLo LLp,
KRONZEROFIT || 0.173 | 0.048 | 354.4 | 206.2 | 148.2 | -15,650 | -9,182 | -6,468
KrONEMFIT 0.063 | 0.018 | 22.4 13.3 9.1 |-15,307 | -8,989 | -6,318
True 0.000 | 0.000 | 0.0 0.0 0.0 |-15,295 | -8,982 | -6,313

Table 1: Results for simulated Kronecker graph of size 1,024.

ABS and RMS indicate absolute errors

and root-mean-square errors between the true and the estimated parameters, while KL, KLo, and KL
represent the Kullback-Leibler(KL) divergence between edge-distributions parameterized by estimated and
true parameters on the overall, observed, and latent graph, repectively. Similary, LL, LLo, and LL; indicate
the corresponding log-likelihoods. Every metric shows that KronEMFit outperforms KronZeroFit.

LL LLo LLz
KRONZEROFIT | -28389 | -15735 | -12645
KrRONEMFIT -27748 | -15436 | -12312

Table 2: Log-likelihood for LinkedIn graph of size
2,048

Figure 3: Network propertiy plots for LinedIn
dataset. In every figure, KronZeroFit(blud-circle
line) is likely to be lower as well as to drop earilier
than KronEMFit(red-cross line). Also, it is remark-
able that KronEMFit tends to follow the TrueFit
which is the estimated Kronecker graph for the true
graph. This illustrates that KronEMFit pulls out
the Kronecker structure of the true graph. (Top left

In-degree CCDF, top right : out-degree CCDF,
bottom left : singular value, bottom right : triad-
participation)

Based on the assumption that TRUEFIT derives the Kro-
necker structure from the real graph, we can conclude that
KrRONEMFIT works well for the real dataset.

3.3 Graph Prediction

The tests mentioned above are handled in the snapshot of
the given graph at the same time. However, we are able
extend our approach to the evolution of the graph. The fact
that Kronecker structure is consistent over time is already
shown at the time when the number of nodes is almost equal
to the power of Ng[2]. We hope that this consistency still
holds even when the time is not equal to N&.

We caught several snapshots of Yahoo-Flickr network be-
tween N = 1,024 and N = 2,048, made KRONEMF'IT and
KRNOZEROFIT for Ny = 2, and observed how they changed
over time. However, for this experiment, a little different set-
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Figure 4: Log-likelihood for Flicker dataset of size
2,048. KronEMFit (red-cross line) looks stable in
the log-likelihood for the future graph(N = 2,048),
while KronZeroFit (blue-circle line) does not. This
tells that KronEMFit is more appropriate for the
graph prediction than KronZeroFit.

ting is required. The assumtion about the expected number
of latent edges would not be valid any longer in the tem-
poral dataset; rather, the Densification Power Law(DPL)[3]
can be a hint. Assuming that DPL is satisfies, the number
of latent edges is expected to be :

E[Ez] = NY'*v P _ g
for k = [logy, N1

Figure 4 represents the log-likelihood of each temporal Kro-
necker parameter for the future graph at N = 2,048. First,
it is seen that Kronecker initiator at N = 1,024 works quite
well for the graph at N = 2,048 as anticipated in [2]. Fo-
cusing on the time between N = 1,024 and 2, 048, the result
from KRONZEROFIT suddenly falls down and increases grad-
ually; on the other hand, KRONEMFIT tends to be stable
in the log-likelihood sense. Moreover, their values are lit-
tle different from that of the fitted Kronecker parameter at
N = 2,048. From this point of view, we might claim that
KRONEMFIT offers the comparatively persistent structure
over time so that we could predict the graph in the future.

4. DISCUSSION

Section 3 confirms that KRONEMFIT leads a good infer-
ence of the Kronecker graph in the same snapshot as well
as in the time series. By the way, someone might question
why it is important to fit to the true Kronecker graph of
size N¥, because the current graph contains only N < N§
nodes. Moreover, KRONZEROFIT, the scheme of append-
ing isolated nodes, sounds more attractive since it yields



the outcome much faster. Furthermore, it seems to capture
the network properties of the observed graph, for instance,
in the CCDF plots. In this sense, it could be said that
KRONEMEFI1T chases the hypothetical structure.

However, since the Kronecker graph is mathematically de-
fined only when N = N{, it is indispensable to think of the
Kronecker graph that covers the current one. The observed
graph can be viewed as a sampled subgraph of the Kronecker
graph. KRONEMFIT naturally gives us the inverse process
of this sampling, which is the inference of the latent graph.
Every intermidate stage is stochastically well-defined.

Therefore, despite of somewhat slowness and imaginariness,
KRONEMFIT plays a key role on the Kronecker model. First
of all, it is probablistically well-defined regardless of the ex-
istence of the closed-form. The main advantage is the con-
sistency in some space, the Kronecker initiator. What we
actually want in a stochastic graph model is the structure
maintained globally in the given graph. This condition is
satisfied in KRONEMFIT because the Kronecker parameter
would not change a lot when we pick up a subgraph of the
observed graph by deleting some nodes randomly. In con-
trast, zero-padding is not the reverse of any normal stochas-
tic procedure.

Besides, the effect of underestimation in KRONZEROFIT arises
due to the number of nodes, not due to the graph property.

For an extreme example, if the current graph is the clique of

size Néc*l + 1, KRONEMFIT definitely outputs the complete

structure, while KRONZEROFIT would not.

The inference becomes more substantial in the temporal
dataset where it is equivalent to the prediction. Evidently,
the addition of isolated nodes is not the solution for the
graph predicton. It does not makes sense at all that the
Kronecker parameter changes dramatically only because the
number of nodes is just past the power of Ny. Further, it is
general intuition that if the potential structure looks steady
when N = 1024, 2048, 4096, and so on it should be also sta-
ble between those time ticks. KRONEMFIT furnishes this
property, too.

Additionally, the probablistic model is good for us to apply
lots variations on the model and develop it. For example, we
could establish a new field in the graph theory by defining
some function such as Kron(G, No).

On the other hand, the Kronecker model originally includes
some limitations. First, there is no reason to restrict the
nodes to the permutation. The permutation indicates that
any pair of nodes does not contain the exactly same com-
bination of attributes, but it would not happen in the real
world. We have not investigated what advantages we might
gain by relaxing this limitation, but this must be a great
topic.

In addition to the limitation, after taking some experiments
with regard to link prediction, we figure out that high ac-
curacy cannot be obtained by the current Kronecker model.
It is probably because the model is parameterized by only a
few values so that the edges could affect on each other too
tightly. After all, the lack of flexibility can be the weakness

of Kronecker model, and it is left for the future work.

5. CONCLUSION

In this paper, we introduced EM approach to estimate the
potential Kronecker structure in any size of graph. Thanks
to various MCMC techniques, the estimation can be tractable
and scalabel. This fitting model provides not only a stochas-
tically well-defined model but also the consistent parameters
both in the randomly chosen subgraph and in the temporal
graph.
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APPENDIX

A. ALGORITHMS

Algorithm A.1: BAsSicMCEM-ESTEP(G,0,T)

fori:=1to T
do (2%, ¢V) := SAMPLEPOSTERIOR(G, ©)
7 .= (Z(1)7"' 7Z(T))
S i (o), oen o)
return (Z,X)

Algorithm A.2: BAsicMCEM-MSTEP(G, Z, 5, ©)

repeat
fori:=1to T
do A; := GRADIENTDESCENTUPDATE(G, Z(V), 0V, ©)
0:=0+ XA
until converge
return (O)



Algorithm A.3: SIMPLESAMPLEEDGE(G, 7,0, Ez)

Zi; =10
repeat
(u,v) := SELECTKRONECKEREDGE(0, O)
if (u,v) ¢ G,
then Z,, =1
until ZZ” = EZ
return (Z2)

Algorithm A.4: SAMPLEEDGE(G, 0, Z°', o)

Z = z°4
repeat
Zold =7
& ~ uniformly selected in Z°¢
Zold = Zold _ {m}
y ~ SIMPLESAMPLEEDGE(G U Z°%, ©, o)
Zold = Zold U {y}
u~U(0,1)
if u < min (17 i:gjz;)
then Z := z°!
until several steps
return (2)

Algorithm A.5: METROGIBBSSAMPLE(G, ©, Z°!¢ 5°!9)

7 =7 g .= g

:= SAMPLEEDGE(G, 6, Z, o)
0 := SAMPLEPERMUTATION((G U Z), 0, 0)
return (Z,0)

Algorithm A.6: NEwWMCEM-ESTEP(G,©,T)

initialize Z(O)7 a©
fori:=1to T
do (2, ¢) := METROGIBBSSAMPLE(G, ©, Z(~1) 5(~1)
Z:=(zW,..., zM)
Y= (0'(1), e ,U(T))
return (Z,X)

Algorithm A.7: NEwMCEM-MSTEP(G, ©, Z, ¥)

@old =0
repeat
(Z,0) = NEWMCEM-ESTEP(G, ©4, T )for i :=1to T
do A; := GETGRADIENT(G, Z9, ¢V )
A = E(Al)
0: =0+ XA
until several steps
return (O)



