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ABSTRACT

We explore a novel dataset of sexual interactions between
members of a student group. We find that the dataset ex-
hibits organic clustering that does not coincide with official
social groupings. We compare the set to the Jefferson High
set in Bearman’s “Chains of Affection” paper and find that
dataset is a plausible extension of similar graph properties
taken over a longer period of time. Our results may have
applications to STD research in epidemiology, and we sug-
gest directions for a more comprehensive work that would
likely result in an evolutionary model for this type of sexual
interaction network.

1. INTRODUCTION

In this paper we analyze a unique social network containing a
record of sexual interactions over 20 years between students
in a large voluntary student organization at Stanford Uni-
versity. Our goal in this project is to analyze the structure
and composition of this network in the context of other net-
works capturing similar interactions, as well as from a more
generic community-finding perspective. Previous research in
this area has been well cited, both by researchers from the
field of epidemiology working towards effective models of
sexual transmitted diseases and by studies of other network
types, suggesting wide applicability of this type of analy-
sis[6].

2. DATASET

The network comprises 477 nodes and 732 edges, where an
undirected edge between two nodes indicates that those stu-
dents had a sexual encounter at some point after joining
the student group. We also obtained the sex and gradua-
tion year® of each student. In addition to this demographic

!Since students may graduate in more or less than four years
and we are primarily interested in using the measure to iden-
tify them by chronological cohort, we define graduation year
as the end of the fourth academic year after a student en-
rolled at Stanford.
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data, we also recorded two pieces of data specific to this
student group for each node. First, the student group it-
self is subdivided into several subgroups, which the students
self-select themselves into upon joining the group?; we will
call these subgroups sections. Second, in order to capture
individuals’ level of involvement in the group, we count the
number of leadership positions (staff positions) each student
holds over the course of membership; since each leadership
position involves a significant extra time commitment, we
regard the students acquiring more staff positions as more
involved in the group.

The sexual encounters recorded in the network span students
from 20 graduation years (1985-2014), and were collected
over the course of several years through oral interviews per-
formed by one individual as a hobby, starting around 2004.
Naturally, although total membership in the student group
has remained roughly constant over that time period, data
for older interactions is somewhat more sparse. This is pri-
marily due to the large amount of time elapsed between the
sexual encounters themselves and the time of interview, as
well as the geographic and social dispersion of students in
the years after graduation. In order to analyze denser por-
tions of the whole network (and to enable computational
feasibility of certain algorithms), some of our analysis fo-
cuses on the induced subgraphs from nodes having grad-
uation years in the non-overlapping ranges 2001-2004 and
2005-2008; these ranges taken together account for approx-
imately 30% (144/477) of the total nodes.

For a general idea of the full network’s structure, the network
is dominated by one giant connected component, containing
424 of the 472 nodes, which has a diameter of 15 and average
shortest path length of 5. Note that due to the prevalence
of heterosexual encounters (92% of all edges are cross-sex),
this diameter is roughly twice as great as would be expected
in a typical social network without such a heterophilic re-
striction.

3. NETWORK STRUCTURE
3.1 Chains of Affection

Our starting point for our analysis of the network structure
was Bearman, et al.’s analysis of the sexual interaction net-
work at “Jefferson High”[1]. Bearman’s main conclusion is
that the network can be closely modeled as a spanning tree

2 A small minority of students join multiple subgroups, which
we represent by equal fractional membership in each sub-
group, except where explicitly mentioned.



Figure 1: Graph of the gigantic component

that compromises a gigantic component in the graph, with
a number of monogamous dyads and fewer triads making
up the majority of the remainder of edges. Our network
seems to match the idea that most of the nodes are mem-
bers of a giant component. However, at least at first glance
it appears that our network’s gigantic component (Fig 1) is
significantly denser than Bearman’s Jefferson High network.
It is certainly the case that one would have to break signifi-
cantly more edges to end up with a non-gigantic component
than in the Jefferson High graph, where two broken edges are
sufficient. However, as can be seen in Figure 3, the vast ma-
jority of nodes have relatively small degree. It appears that
this follows the high clustering, low diameter small world
model. It appears that many of the small world "shortcuts”
are found at the high degree nodes, which have noticeably
greater average graduation year deltas amongst their edges.
However, due to the coarseness of year information (which
is particularly confounding among high degree nodes, many
of whom have been involved in the student group for longer
than four years) we didn’t follow this intuition with a more
in-depth quantitative study.

One of the key differences between the two graphs is the
length of time observed. In Bearman, the survey partic-
ipants gave information about sexual encounters over the
past 18 months. In comparison, our dataset lasts over 20
years. As such, it’s reasonable to inquire as to whether the
increased density is simply the outcome of additional con-
nections formed over time.

In order to answer this question we simulated an 18 month
period of our dataset. We did this by restricting our nodes
and edges to a single four graduation year cohort. We then
removed (48-18)/48 of the total edges at random to simulate
the time. We repeated this process 20 times and examined
the resulting graphs. Although the size of the largest con-
nected component varied between 25% and 65% of the total
all looked essentially like 2, with a spanning tree or near
spanning tree component. This is very similar to the graph
of Fig 2 in Bearman.

As such, our graph can fairly be considered as a chrono-

Figure 2: Simulated 18 month subset of dataset
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Figure 3: Histogram of node degree distribution

logical extension of the Bearman graph. Bearman suggests
that the spanning tree may be a result of social prohibitions
against having sexual relations with those already close to
you in the sexual interaction graph. Therefore, it seems
reasonable to suggest that the increasing connectedness is a
result of these prohibitions being relaxed over time.

3.2 Homophily amongst self-selected groups

The student group encourages to students to self-select into
groups in two ways: by section and by whether or not they
take an officer position in the organization as part of staff.
The latter affects relatively few students compared to the
former, which is a selection process every member of the or-
ganization participates in. We were curious about the effect
of this self-selection for two reasons. First, this is a reason-
able proxy for amount of platonic social interaction. During
official events, the different sections spend much of their time
together, and non-official events are often organized and pre-
dominantly attended by a single section. Second, if we are
to make a comparison to the Jefferson High network, to the
extent that sections both have an effect on the clustering
behavior and are not simply a proxy for phenomenona like
level of intra-clique platonic social interaction that occur in



any social setting, we must be wary for factors that might
make the dataset not directly comparable. Both of the con-
cerns depend first on determining the significance of sections
in determining cluster formation. For if there is no signif-
icance, it both illuminates a way in which level of platonic
social interaction doesn’t affect sexual interaction and alle-
viates fears of confounding factors in the comparison with
Jefferson High. If there is significance, further research is
required.

We were surprised at the seeming dearth of literature in the
social network analysis space talking about statistical meth-

ods for determining significance of preexisting variables. Much

of the literature (e.g. [4]) focused on value metrics such as
conductance and modularity that work well for comparing
different clustering methods but don’t lend themselves to a
statistical analysis of how probable the structural deviations
are. Additionally, there is literature on the use of statistical
correlation methods (e.g. [2] and [11], but this seems to rely
on an an arbitrary cutoff on a correlation coefficient rather
than a rigorous probabilistic analysis. Our eventual method
was to simply compute the number of expected in-cluster
edges and cross-cluster edges for a random graph with clus-
ter of size k in a graph of size n® and then run a Pearson
chi-square test for goodness of fit to the distribution. We
readily admit that this isn’t particularly novel and has some
obvious shortcomings (e.g. other confounding structural el-
ements are unaccounted for). Nonetheless, in practice it
seemed to work well and we couldn’t think of any reason to
suspect findings for the null hypothesis.

We ran the chi-square test on each of the sections. Two
sections had statistically significant deviations from the null
hypothesis: one was a single sex group, which unsurprisingly
had more cross-cluster connections than expected (P=1.2e-
05). The other was a section that has an informal reputation
for being relatively isolated (P=1.4e-06). Two other sec-
tions had more internal connections at the 90% confidence
level but not at the 95% confidence level and the remaining
five sections have no statistically significant deviation. This,
combined with the structural explanations, suggest that de-
viation is only loosely tied to the official section, and it seems
likely that what deviation there is a function of natural so-
cial group selection.

4. COMMUNITY DETECTION

Since homophily on single attributes alone does not com-
pletely account for the presence of sexual choices between
groups and individuals, we turn ourselves to the broader
question of detecting significant communities in the network,
whatever their composition. We find that distinct communi-
ties exist, and that they show significant differences between
and among them in terms of the variables studied so far, but
that the variables themselves are not adequate to describe
the communities. That is, the communities that do exist
defy easy description in terms of section, graduation year,
or staff membership.
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Figure 4: NCP plot of the giant connected compo-
nent of the whole graph. The original graph shows
substantially more community structure than the
rewired graph. Note the spikes at community sizes
of roughly 8 and 40.

In order to establish the existence of communities, we first
present a network community profile plot, which determines
the likely sizes of communities that we can find in the data.
Next, we describe three separate algorithms that partition
the network into two or more partitions, and evaluate their
performance on our dataset, both in terms of absolute mea-
sures and relative agreement between community detection
algorithm.

4.1 Network Community Profile
The network community profile plot (NCP plot) is a tool
that “measures the quality of network communities at dif-
ferent scale sizes”[10]. In particular, we want to use the NCP
plot to determine whether communities exist in a network.
The NCP plot plots the minimum conductance ®(k) over
all communities of size k£ in the graph, as a function of k.
The conductance of a set S of nodes is defined as the ratio
of edges leaving S to the minimum of the total degree of S
or S:

4(5) = —iessgs 1 M

min { A(S), A(S)}

where A is the adjacency matrix of the graph G, and A(S)
is the total degree of a set S. In this formulation, NCP
plots should have downward spikes corresponding to good
community sizes, and for reasonably small social networks
(i.e. those having some social community structure), the
overall trend should be downward as a function of k. In
particular, a network that does not exhibit any community
structure should have a roughly flat graph of ®(k) for 2 <

k< % We also consider a null model of a rewired network,
preserving degree sequence.

According to the NCP plot, we should expect to find some
community structure as is typical in social networks. As
we will see, the community detection algorithms we chose
to evaluate will indeed find some communities having the
optimal sizes. Although the NCP plot reflects community
structure for the entire network, we only used it as a start-



ing point for determining whether communities exist. The
remainder of the community analysis was performed on the
2001-2004 and 2005-2008 datasets.

4.2 Girvan-Newman

The first algorithm we use for finding communities in the
network is the Girvan-Newman algorithm[5]. This is a heuris-
tic algorithm that uses the notion of edge betweenness, de-
fined simply as the number of shortest paths running through
an edge. Edges are deleted in order of decreasing between-
ness, where the betweenness is recalculated after every re-
moval; the goal is to eliminate edges that span communities,
leaving separate connected components. Since every edge is
eventually removed, the result of the Girvan-Newman algo-
rithm is a dendrogram of hierarchically-arranged partitions.
For our analysis, we somewhat arbitrarily stopped remov-
ing edges after creating 20 communities. (This facilitated
comparison with other community detection methods, and
passed the point of optimized modularity; see below.) The
algorithm as described in [5] can be run in O(|E|?|V]) time.

4.3 Louvain

The Louvain method of community detection[3] is based on
heuristically optimizing the modularity of a partition[12].
The modularity of a partition captures the difference be-
tween the number of intra-community edges across all com-
munities compared to a rewired network. More precisely,
Fortunato and Bartélemy define modularity as

°=2: i~ (sir)
2|61~ \2[E]

where there are m communities, ls is the number of edges
inside community s, and d; is the total degree of community
s[4]. Thus partitions with high modularity (Q close to 1)
exhibit much more intra-community edges than would be
expected in a random network, and can be said to capture
strong community behavior. It is worth noting that there
is some evidence[4] that modularity optimization is unlikely
to find communities smaller than some minimum resolution,
but considering the relatively large optimal community size

according to our NCP plot, we are not concerned about such
limits.

(2)

There are two phases to the Louvain method: first, start-
ing with one node per community, neighbors are added to
a node’s community if the change increases overall modu-
larity. Next, the process is repeated with communities in
place of nodes, and so on, until modularity can no longer be
increased.

4.4 Latent Position Cluster Model

In the latent position cluster model (LPCM)[7][9], each node
is presumed to occupy some location in a multidimensional
Euclidean “social space,” where the probability of a con-
nection to another node depends on the Euclidean distance
between node. Communities are estimated using Bayesian
estimation of mixture models, where a parameter K; = s
if node ¢ belongs to community s, which is estimated using
Markov chain Monte Carlo sampling.

The advantage of this model is that it does not assume that
homophily exists on any particular set of attributes; nodes

Graph | Algorithm | # Comms. [ @

’01-°04 G-N 8 0.6968
’01-'04 Louvain 7 0.6975
’01-°04 LPCM 4 0.6248
’05-"08 G-N 11 0.6438
’05-"08 Louvain 7 0.6496
’05-708 LPCM 4 0.5345

Table 1: Summary of community detection results.
The best partition for each algorithm and dataset is

shown.

Graph Algorithms Agreement

'01-°04 G-N/Louvain 0.7872

’01-°04 G-N/LPCM 0.5745

’01-°04 | Louvain/LPCM 0.5957

’05-’08 G-N/Louvain *

’05-'08 G-N/LPCM *

’05-’08 | Louvain/LPCM 0.5185
Table 2: Agreement results between best-

modularity partitions. Comparisons marked with
* were not performed due to computational infeasi-
bility.

that are more likely to connect to one another should simply
be estimated closer together in the social space. In this sense
Conversely, however, it is difficult to succinctly explain the
social meaning of each Euclidean dimension. As we shall see,
this mirrors the problem with other community detection
methods that it is difficult to describe the communities in
terms of the node data we have collected.

4.5 Community Analysis

Table 1 summarizes the results of the various community
detection algorithms on the 2001-2004 and 2005-2008 sub-
graphs. Clearly, the relatively high modularities of all the
best community partitions indicate that there must be some
sort of community structure. However, several questions re-
main about the quality of the community detection results.
First, we would like to know how well the communities iden-
tified by our algorithms correspond to the data collected
about each node. From our homophily analysis, it should
already be somewhat clear that communities do not break
down easily along the lines of section or graduation year.

This argument is supported by an examination of the distri-
butions of section membership and graduation year within
the communities, as exemplified by Figure 5. Clearly from
the histograms we can see that the section and year distribu-
tions differ significantly between communities, but the distri-
butions defy easy explanation. The quality of succinct gen-
eralization we can make between two communities is along
the lines of claiming community 3 is younger than commu-
nity 4, owing to the oppositely skewed graduation years. It
is clear, then, that although these communities undoubtedly
exist, any variables sufficient to succinctly describe—if they
exist—them are not captured in our current dataset.

The final analysis we perform is a comparison of the different
community detection methods, summarized in Table 2 For
each pair of community partitions of the same subgraph, we



Community 1: 16 nodes Community 2: 9 nodes

Community 3: 11 nodes Community 4: 11 nodes
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Figure 5: Distribution of year and section membership for the best LPCM community for the 2001-2005
subgraph. Bar heights are fraction of the total population of that category across all histograms.

define the agreement between partitions as the fraction of
nodes assigned to the same community.* The relatively high
degree of agreement between the various partitions further
supports the hypothesis that the communities we have found
are in fact meaningful. Moreover, there is greater agreement
between some pairs of non-optimal-modularity partitions,
and quick inspection of the non-agreeing nodes shows that
they are mostly low-degree outliers.

S.  CONCLUSION AND DIRECTIONS FOR
FUTURE RESEARCH

We believe our two major findings are that our dataset does
appear to be directly comparable to the Bearman’s[1] Jeffer-
son High dataset and that despite the density, meaningful
clusters due exist, although we haven’t succeeded in explain-
ing the major evolutionary factors behind cluster formation.

There are two major avenues of research that we would rec-
ommend pursuing but which we couldn’t due to time or
resource limitations. The first is to look at the embedding
of the social group within the larger Stanford community:
students who participate in staff, which we use as a proxy
for involvement in the group, have an average degree of 3.8,
compared to 2.4 for non-staff members. Since we don’t be-
lieve staff are noticeably more promiscuous than their non-
staff counterparts, this suggests that there are many edges to
nodes outside the student group, that could have significant
effects on graph measures. Kossinets[8] suggests a number
of effects only examining a subgraph could have. However,
he only suggests effects on a particular class of graphs and
it’s not at all clear that our graph exhibits the same charac-
teristics. Additionally, we were unable to find data on the
larger graph, although it seems likely that campus health or-
ganizations maintain statistics from surveys that would at

“More precisely, we take the maximum fraction over all com-
munity labellings. Unfortunately, this has the side effect of
making the comparison run in O(nm!) for n nodes and m
clusters.

least answer questions such as average degree.

The second avenue both pertain to correcting the sparsity
of attributes in our dataset. For instance, we didn’t have
even a rough ordering of the sexual interactions. This sig-
nificantly limited our ability to predict the evolution of the
graph, which would answer many more questions about the
connection between the Jefferson High graph and ours. An
intense survey would provide data to provide analysis com-
parable to Bearman’s chronology-based work later in the
paper.
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