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ABSTRACT
We analyze URL and tag propagation on Twitter social net-
work with 54 million nodes and 1.5 billion edges, one of the
largest social networks studied in academia. We specifically
focus on the interplay of external and network influences.
We attribute propagation to the network whenever a user
mentions a tag or URL after one of its neighbors has pre-
viously mentioned it, and to external influence otherwise.
We develop a new metric to measure external influence and
an efficient algorithm to calculate it. The insight we obtain
from the external influence metric paired with the analysis
of cascade dynamics of the network influence, not only val-
idates some of the previously observed phenomena in other
social networks but also provides new insight into the inter-
play of network and external influences over the lifetime of
memes in the network.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database applications—
Data mining

General Terms
Experimentation, Measurement, Algorithms

Keywords
Social networks, information propagation

1. INTRODUCTION
Twitter is a social networking and micro-blogging service

which has become popular over the last couple of years.
Twitter users send and read messages known as tweets. Tweets,
as shown in Figure 1, are text-based posts up to 140 char-
acters long and are delivered to the author’s subscribers,
known as followers. Such subscriptions form directed not al-
ways symmetric connections, where user A may follow user
B and, hence, receive A’s tweets, but user B may not follow
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A and may not receive B’s tweets. These connections nat-
urally form a directed social network where nodes are the
users of the service and edges represent the subscriptions.

Goal

• Study information propagation on Twitter from
the network standpoint

• Given:
–  The social network

–  Sequence of nodes that mentioned a hashtag or
URL in chronological order

• Study topology and characteristics of infected
nodes in the graph

Secretary of state Clinton announces 2012 Int’l AIDS conference

to be held in U.S.: http://bit.ly/8Bc #WorldsAIDSDay

Figure 1: An example of a tweet

Tweets, as shown in Figure 1, often contain URLs and
tags. Tags are tokens prefixed with a #, e.g. “WorldsAIDS-
Day” in Figure 1, and often used to indicate the tweet’s topic
or event. On the other hand, URLs are typically HTTP links
to news articles, pictures, or videos.

In this paper, we study the propagation of URLs and tags
over the Twitter social network. Specifically, we look at the
users (i.e. nodes in the network) that mention a particular
URL or tag in chronological order, their distribution over the
network, and the presence/absence of edges between them.
We will generally refer to such chronological distribution as
information propagation, where information, in our context,
will refer to the URLs and tags.

There are a number of factors that make Twitter inter-
esting for studying information propagation and make our
work different from the previous work in the area. First of
all, Twitter, unlike much of the previously studied media
such as news feeds, blogs, emails, has an explicit social (i.e.
subscription) network. Our work is one of the first ones
to look at information propagation on a real social network
which is, on top of all, one of the largest ones known to date.
Second of all, because information on Twitter often spreads
in the form of tags and URLs, there is no burden of data
cleaning and thus no potential bias in results. Thirdly, Twit-
ter URLs and tags, in themselves, are interesting to study
as people often now rely on them to find trends and news
on the web.

While Twitter users can discover information directly from
the network, i.e. by reading the tweets of the users they fol-
low, they can equally discover information from outside of
the network, e.g. from TV, newspapers, online news aggre-
gators (e.g., Google News), etc. In this work, we attempt
to understand how to differentiate between the two cases
and propose new metrics to quantitatively analyze them.
To our knowledge, this is one of the first attempts to study
the contribution of external sources to information spread
in social networks. Moreover, most of the work up to date
has focused on propagation directly via the network, i.e., in
our setting, the case when users find information directly
from the people they follow. However, even to this respect,
our findings not just confirm the already observed phenom-
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ena, but also unveil new interesting dynamics. Last but not
least, the findings we report in this paper have applications
in news and trend detection and tracking.

In summary, our contributions are as follows:

• Basic analysis of Twitter social network properties (Sec-
tion 3)

• Metric to measure the contribution of external sources
to information propagation in a social network: 1) its
formal definition, 2) efficient algorithm to compute it,
3) its evaluation on real data and 4) comparison of its
behavior on real data to two simple synthetic informa-
tion propagation models (Section 4)

• Comprehensive analysis of the network contribution to
the spread of URLs/tags on Twitter (Section 5)

2. PRELIMINARIES
We begin by introducing our terminology and notation.

Network: Given subscription (i.e. follow) relationships
between Twitter users, we define the Twitter network as
a directed graph G = (V, E), where each node in V is a
Twitter user. For any two users v1 ∈ V, v2 ∈ V there is an
edge (v1, v2) ∈ E if and only if v2 follows v1. In other words,
we introduce an edge from v1 to v2 as long as v2 subscribes
to tweets of v1, and, hence, information in the form of URLs
or tags posted by v1 is observed by (i.e. flows to) v2.

Definition 1. For any two nodes vi ∈ V and vj ∈ V ,
the distance d(vi, vj) from vi to vj is defined as the shortest
directed path in the network from vi to vj. If such path does
not exist, d(vi, vj) =∞.

Stream:

Definition 2. Tweet is a triple 〈v, m, t〉, where v ∈ V
is the user who posted the tweet, m is the text of the tweet
(message), and t is the time when the tweet was posted.

Definition 3. Stream is a sequence of tweets 〈〈v1, m1, t1〉,
〈v2, m2, t2〉, . . .〉, where any tweet 〈vi, mi, ti〉 precedes another
tweet 〈vj , mj , tj〉 iff ti ≤ tj.

For simplicity, we will assume that we have access to only
one stream. This stream may either contain all publicly
available tweets or a sample of all the tweets.

Definition 4. For a given URL or tag x, user v men-
tions x if there is a tweet 〈v, mi, ti〉 in the stream, such that
x is contained within mi.

Definition 5. For a given URL or tag x, the first men-
tion of x by user v is the first tweet 〈v, mi, ti〉 in the stream,
such that x is contained within mi. If v does not mention
x, the first mention of x by v does not exist.

Definition 6. An infection is a pair of some tag or URL
x and a sequence of nodes 〈v1, v2, . . . , vn〉 (infection sequence)
of some length n, such that a node v belongs to the sequence
iff it mentions x and for any i, j, 1 ≤ i < j ≤ n, the first
mention of x by vi is before the first mention of x by vj.

Note here that according to this definition of infection, a
node can appear in the infection sequence only once. In
other words, we use Susceptible-Infected-Recovered (SIR)

disease propagation model [1], where once infected, a node
cannot be reinfected (all mentions of some URL or tag x
after the first mention are ignored).

Cascades:

Definition 7. For a given infection 〈x, 〈v1, v2, . . . , vn〉〉,
we define its infection graph at step k, 1 ≤ k ≤ n, as a
subgraph Ck(Vk, Ek) of G(V, E), where Vk = ∪1≤i≤kvi and
there is an edge (vi, vj) ∈ Ek iff (vi, vj) ∈ E and i < j.

Definition 8. In a given infection graph Ck(Vk, Ek), we
refer to its connected components as cascades.

Definition 9. A cascade is said to be non-trivial if its
size is greater than 1.

Definition 10. A node vk is said to be cascaded if for a
given infection 〈x, 〈v1, v2, . . . , vn〉〉 and its graph Cn(Vn, En),
vk is in a non-trivial cascade.

Definition 11. For infection 〈x, 〈v1, v2, . . . , vn〉〉 and its
graph Ck+1(Vk+1, Ek+1), 1 ≤ (k + 1) ≤ n, let V ′ be the set
of incoming neighbors of vk+1. Node vk+1 is said to merge
cascades if the nodes in V ′ belong to more than one cascade
in the graph Ck(Vk, Ek) at step k of the same infection.

3. DATA SET
Network: We have been continuously monitoring a sample
of all publicly available tweets over the last six month and,
from each observed user ID among the collected tweets, we
explored the Twitter network structure in a breadth-first-
search manner. We collected this way follow relationships
(i.e. IDs of people a user follows) for almost 54,310,622 users
which is 99.9% of all user IDs known to us. The graph we
have obtained has 1,491,979,651 edges with average number
of followees (in-degree of a node in the network, per our
definition) per user at 27.47.

Here we provide some other basic stats on the collected
network.

• Figure 2 shows the out-degree distribution of the net-
work plotted on the log-log scale, i.e. the distribution
of the number of followers per user. One can observe
that the distribution follows the power law. The power
law exponent is 1.95, estimated by the complementary
cumulative distribution function (CCDF) method, and
1.84, as estimated by the maximum likelihood estimate
(MLE) method.
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Figure 2: Degree distribution of Twitter network:
a) outgoing (followers) b) incoming (followees).

• Figure 2 shows the in-degree distribution of the net-
work plotted on the log-log scale, i.e. the distribution
of the number of followees per user. Although there are
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Figure 3: a) Weakly connected components size dis-
tribution b) Clustering Coefficient as a function of
vertex degree.

a few spikes, overall, the distribution also follows the
power law. The power law exponent is 2.13, estimated
by the CCDF method, and 1.90, as estimated by the
MLE method. The spikes can be explained by the ex-
isting follow limits, enforced by Twitter. Specifically,
one cannot currently follow more than 2000 people un-
less she is followed by at least 2000 people. Hence, we
observe in Figure 2 a spike at the vertex degree of 2000.
The subsequent spikes may also be due to the follow
limits: beyond 2000 friends, Twitter enforces follow
limits proportionally to the current number of follow-
ers. The small spikes before 2000 could be possibly
due to other similar constraints enforced by Twitter.

• Figure 3 shows the distribution of weakly connected
components by size. As observed with many other
social networks, there is a giant connected compo-
nent that includes 99.9995% of the graph. The second
largest component has only 43 nodes.

• Although the clustering coefficient was originally de-
fined for undirected graphs [4], we extend its definition
to directed graph as follows. For a vertex vi, we define
its clustering coefficient to be

Ci =

P
vj∈Ni,vk∈Ni,vj 6=vk

1{(vj , vk) ∈ E}
|Ni||Ni − 1|

If Ni is the set of outgoing neighbors, i.e. followers, of
vi, then Ci is defined as the outgoing clustering coeffi-
cient of vi. Equivalently, if Ni is the set of incoming
neighbors, i.e. followees of vi, then Ci is defined as the
incoming clustering coefficient of vi.

Now, using these definitions, in Figure 3 we plot incom-
ing and outgoing clustering coefficients as a function
of vertex in-degree and out-degree, respectively, up to
1000. The average incoming clustering coefficient is
0.12 and the average outgoing clustering coefficient is
0.05. The incoming coefficient curve has a number of
“dips” at the same exact points that incoming degree
distribution has spikes. Granted that the spikes in in-
degree distribution are due to the follow limits, it is
natural that as people force their number of followees
to reach the limit, fewer of these people will follow
each other among themselves. On the other hand, ob-
serve that the outgoing clustering coefficient has a sine
wave shape in the beginning. We believe this is due to
spam on Twitter: users with low out-degree are typ-
ically users with low activity or new users, thus they
have few friends who follow them and the percentage
of spam users that follow them is higher than average.

Stream: We have collected 33% sample of all publicly
available tweets from mid June through the end of October
of this year with up to 5 million tweets per day. To simplify
processing, we focused only on the 10-day period from Au-
gust 1 until August 10. From this 10-day period with the
total of 45 million tweets, we extracted all of the URL and
tag mentions. We have found 315,000 distinct tags and 9.5
million distinct URLs after translating short URLs to long
URLs. We proceeded by picking a sample of 20 most popu-
lar URLs and 15 most popular tags with a distinct spike in
mentions in the middle of Aug. 1 - Aug. 10 and no or little
activity in the beginning and end of this time interval. All
of the analysis in what follows is based on these 20 URLs
and 15 tags with 1000 mentions per each, on average.

Synthetic Models: Our main objective is to study the
interplay between the external and network influences in in-
formation propagation on Twitter. Hence, to put our results
in perspective, we would like to have some basis for compar-
ison. For this, we developed two primitive models of infor-
mation propagation that represent two extremes: one where
only external sources contribute to information propagation
and one where all the contribution is due to the network.

• We will call the first one Random , where we produce
an infection, by picking at each step a node uniformly
at random from the network, as long as it is different
from the previously picked ones.

• We will call the second one RC (for“Random Cascade”),
where we pick the first node uniformly at random from
the network, and generate the subsequent ones by pick-
ing at random a neighbor of already infected nodes (at
step 2, there is one such node, at step 3, there are two
such nodes, etc.), again as long as it is different from
the previously picked nodes.

For each of these two models, we generate 10 infections with
1200 nodes each and, when reporting results, use the average
of these 10 generated infections.

4. EXTERNAL INFLUENCE

4.1 External Influence Metric
If there is a major event that happens externally to the

network, e.g. death of Michael Jackson or Barack Obama
winning the Noble prize, memes (URLs and tags) about it
may spread through the network quite sporadically and in-
dependently of the edges between the nodes that mention
them. For example, consider a sample network in Figure 4.
Suppose node o mentions some meme (i.e. gets infected),
followed by a, and finally followed by i. Clearly, a could
not have gotten this meme from o, as there is no directed
path between them. On the other hand, assuming that in-
formation cannot flow via more than one edge at a time, i
could not have gotten this meme from a or o either. The
shortest path to a from the “infected” nodes is {i, h, g, d, a}
consisting of 4 edges.

In general, whenever a newly infected node x has no edge
from any of the currently infected nodes, we can assume x
could not have possibly gotten infected through the network.
Now suppose that the social network distance between any
two nodes is proportional to the social distance between two
people in real life. Then, intuitively, some major event dif-
fused by many external sources is likely to spread over larger
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Figure 4: External influence example

distances within the social network than some minor event
(event local to some community). Accordingly, to measure
the influence of external sources on meme propagation we
would like to have some notion of network distance traversed
by the infection to reach all currently infected nodes.

For any given infection 〈x, 〈v1, v2, . . . , vn〉〉, as defined in
Section 2, to measure the contribution of external sources
to its propagation by each step i, we develop the following
metric, intuitively equal to the minimum distance traversed
by the infection in the network:

θi =

iX
t=2

min
1≤k<t

{d(vt, vk), dmax + ε}, where

• ε is some number > 0
• dmax is the longest distance in the network between

any two connected nodes

So, using our example from Figure 4, this metric at the third
step is equal to (8 + ε) + 4.

4.2 External Influence Algorithm
The naive implementation of the external influence met-

ric described in the previous section would require running
n(n−1)

2
BFS’s for an infection with n nodes. On large graphs

with more than 107 nodes and over 109 edges, this would be
almost impossible to compute for any large infection (more
than 1000 nodes). In this section, we present an efficient al-
gorithm we developed that on average reduces computation
time from hours to milliseconds on the network of our size.

A simple unidirectional implementation of our algorithm
is shown in Algorithm 1. Multi-source BFS effectively per-
forms BFS from multiple sources simultaneously with a to-
tal of n−1 runs required to computer the external influence
metric for an infection of n nodes (as opposed to O(n2)
BFS’s with the naive implementation). We not only reduce
by an order of magnitude the number of searches but also
significantly speed up each search individually. The imple-
mentation we use in practice has three more optimizations:
1) it is bidirectional, thus explores nodes from the sources
and the target at the same time, 2) it chooses at each step
the shortest frontier (set of nodes with the highest priority
in a particular direction), 3) it caches found distances to
nodes between multiple calls to the function. All of these
optimizations dramatically reduce computation time.

4.3 External Influence on Twitter
Using the algorithm described, we calculated the exter-

nal influence metric θ at each step for all of the URLs and
tags. As different URLs and tags had different number of
mentions, we performed the following normalization on the
data.

Normalization: For each mention i of a meme (URL or
tag), instead of taking the total θi value, we consider the
change (increment) in θi: ∆θi = θi − θi−1. Then for each

Algorithm 1 multiSourceBFS(S,t,G)

queue← priorityQueue.new()

for s ∈ S do
queue.InsertWithPriority(s,1)

end for
while !queue.isEmpty() do

d← queue.getPriority() // current best priority
vi ← queue.getNext()
for all vj , s.t. (vi, vj) ∈ E do

if vj = t then
return d + 1

else
queue.InsertWithPriority(vj,d + 1)

end if
end for

end while

 0

 100

 200

 300

 400

 500

 600

 0  10  20  30  40  50  60  70  80  90  100

!

% of Infected Nodes

Tags
URLs

Random
Random Cascade

 0

 50

 100

 150

 200

 250

 0  10  20  30  40  50  60  70  80  90  100

!

% of Infected Nodes

Tags
URLs

Figure 5: External influence metric θ over the life-
time of an infection a) Average URL and Tag be-
havior in relation to the Random and RC b) Average
URL and Tag behavior in relation to each other.

meme, we divide the number of mentions into 100 bins, e.g.
if a meme has 1200 mentions, each bin contains 12 mentions.
For each bin, we take the average of ∆θi values in that bin,
i.e. if ∆θ1 is the increment at the first mention, ∆θ2 is the
increment at the second mention, etc., the average increment

of the first bin is ∆θ̂1 =
P12

i=1 ∆θi

12
. Now along the x-axis,

we will always have 100 points/bins, and along the y-axis

for each bin i, we will have θ̂i =
Pi

j=1 ∆θ̂j . This way, not
only we normalize the x-axis to have the same number of
points independently of the number of mentions, but also
normalize the y-axis not to be biased by the difference in
mentions between different memes.

Results: Figure 5 shows θ (y-axis) as a function of %
of infected nodes (x-axis) after the normalization described
above. In (a), we show URLs and tags behavior, averaged
across all URLs and tags, respectively, in relation to the
Random and RC synthetic models; in (b) we compare the be-
havior of URLs and tags to each other. From (a), one can
see that URLs and tags in its behavior are more similar to
RC which suggests that the network contributes more to the
propagation of memes on Twitter than the external sources.
Furthermore, when we look at (b), we see that although
URLs and tags propagate similarly in the beginning, θ for
tags over time increases its slope. This indicates that the
tags start traversing larger distances within the network over
time and thus are more influenced by the external sources,
whereas URLs maintain the same slope traversing smaller
distances within the network, thus their propagation can be
mostly attributed to the network. In the section that fol-
lows, we provide more insight into why tags traverse larger
distances.
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5. NETWORK INFLUENCE
In this section, we study how the network contributes to

the propagation of tags and URLs on Twitter. In other
words, we look at how much of meme popularity can be at-
tributed to users copying the meme from the users they fol-
low. Using the terminology introduced in Section 2, we look
at 1) how infection graphs and, specifically, cascades (their
connected components) look like for URLs and tags; 2) how
they evolve as more nodes are infected; 3) what structural
properties of edges and nodes can be indicative of cascade
formation.

5.1 Structure of Infection Graphs
For each URL and tag, we have constructed its infection

graph and looked at all of the cascades. On average, 55% of
nodes are cascaded for URLs and 45% of nodes are cascaded
for tags. As observed in [2] with recommendation networks
and in [3] in blog graphs, we have found that infection graphs
frequently have a large connected component. On average,
it contains 86% of all cascaded nodes for URLs and 73% of
all cascaded nodes for tags.

Next, we attempt to understand how the typical cascades
look like for URLs and tags. If cascades are star-shaped, a
few central nodes may be responsible for meme propagation
on the network, whereas if cascades are chain-like or tree-
shaped, nodes participating in the infection contribute to
the cascades more evenly.
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Figure 6: An example of a cascade

Figure 6 illustrates the largest cascade for one of the memes
we analyzed. One can observe that overall it has a tree struc-
ture with a surprisingly high depth, given the low diameter
of social networks. Furthermore, there are a few nodes with
high out-degree that might have originated as star-shaped
cascades before merging into the main one.

To understand the frequency of high out-degree nodes, we
plot in Figure 7 (a) the number of nodes vs. the number
of infections they produced averaged across all URLs and
tags. The overall distribution follows the power law with a
heavy tail. Clearly, the nodes in the tail contribute to the
propagation of memes more heavily than the other nodes.
Finally, observe how the RC closely mimics the dynamics of
URLs and Tags. This is not surprising because the number
of infected neighbors in RC is directly proportional to the
degree of the node and inversely proportional to the time of
infection, which will naturally generate a power law distri-
bution.To further understand the shape of cascades, we look at
their average depth. Figure 7 (b) shows the depth of a cas-
cade vs. the number of such cascades. Except for the bump
at the end, the distribution again follows the power law. The
bump is due to the largest cascade for each meme which, as
we have observed in Figure 6, is generally quite deep.

Although there is almost always a prominent largest cas-
cade, we have looked into how big are the rest of the cas-
cades. Figure 8 shows the cascade size expressed as a % of
the largest cascade vs. the number of nodes in such cascades.
We specifically exclude the largest cascade from the figure.
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Figure 7: a) Number of infected neighbors vs. num-
ber of such nodes b) Cascade depth vs. number of
such cascades.
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Figure 8: Cascade size vs. number of % of nodes in
such cascades (largest cascade excluded)

What we have found is that some of the tags do not have a
prominent largest cascade, but rather have many medium-
sized cascades. Moreover, even when there is a prominent
largest cascade, there are still quite a few medium-size cas-
cades. As a result, there is a lot of weight under the left
side of the Tags curve, whereas cascade size distribution for
URLs, as expected, follows the power law with the second
largest cascade being only 10% of the largest one.

5.2 How Cascades Evolve with Time
Having observed that tags exhibit more external influence

and tend to have larger cascades, we would like to under-
stand the cascade growth dynamics over time. First, we
would like to verify that the higher external influence ob-
served for tags is due to the emersion of disjoint larger cas-
cades. Second, we would like to confirm that the growth
of the largest cascade is generally due to the absorption of
smaller cascades, as suggested in [2].

In Figure 9, we plot the number of cascaded nodes, size of
the largest cascade, and the number merged cascades within
the largest one as a function of the % of infected nodes for
both URLs and tags. Observe the steep slope of both cas-
caded nodes and the largest cascade curves in the beginning
of a meme lifetime. This indicates that the cascading be-
havior starts strongly and quickly forms the largest cascade.
The same can be confirmed by the initial dip in the number
of merged cascades within the largest component.

The second observation we make is that the growth of the
largest cascade is much more rapid for tags than for URLs.
This can be seen better in Figure 10 (a), which shows the
growth of the largest cascade as function of the % of infected
nodes. Furthermore, whereas the largest cascade has more
or less steady growth for URLs, its growth actually slows
down over time for tags.

Now that we know the general tendency in the growth of
the largest cascade, we look into how the growth is achieved
over time. Figure 10 (b) shows the number of merged cas-
cades (as a % of the largest cascade size) within the largest
one over time (as more nodes are infected). We note the
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Figure 10: a) Growth of largest cascade over time
b) Number of merged cascades within the largest
cascade over time

initial decline in the % of merged cascades indicating that
the initial growth of the largest cascade is mostly internal.
In the middle, however, for both URLs and Tags we observe
the ratio staying quite steady suggesting that the largest cas-
cade starts absorbing many smaller ones. Finally, at the end
of the infection lifetime, we observe two different trends for
URLs and tags. Tags have multiple abrupt drops, whereas
URLs have a few sharp spikes. This suggests that the largest
cascade for tags either exhibits a lot of internal growth or
more likely (based on the previous results) absorbs many
larger cascades. In contrast, the largest cascade for URLs
grows by absorbing many more small ones.

5.3 Which nodes tend to cascade
In this section, we look into which nodes are more likely

to cascade. If one was to do a prediction on whether and
how a meme is going to propagate through the network, it
is important to understand what nodes tend to cascade and
thus which parts of the network the infection is likely to
reach.

First, we plot the adoption curve in Figure 11 (a), i.e.
the probability of adoption/infection vs. the % of incom-
ing infected neighbors. Here, we exclude the data points
with few number of occurrences: for a given % of infected
friends, if the number of such observed cases was less than
4000 we ignored it. With generally low probability of adop-
tion, using too few cases may yield statistically insignificant
conclusions. After such filtering, we can observe how the
probability of adoption for tags generally increases with the
% of infected neighbors. On the other hand, for URLs even
though there is a general upward tendency, the results are
inconclusive: the general trend is similar to the random be-
havior of RC . Our intuition for why the chances of infection
increase with the number of infected neighbors for tags and
not for URLs is that URLs are mostly used to share infor-
mation, whereas tags are often used as a sign of solidarity.
Peer pressure will only increase the chances of agreement for
tags, whereas for URLs, redundancy in information will not
increase the chances of adoption.

The next question we try to answer is whether strong links
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Figure 11: a) Adoption Curve b) Probability of
adoption vs. % of mutual friends

or weak links tend to form cascades. Figure 11 (b) shows
the probability of adoption/infection vs. the % of mutual
neighbors. Specifically, if x is infected and y is its outgoing
neighbor, we calculate the percentage of common outgoing
edges for x and y. We used the same filtering criteria to
ensure that our results are statistically significant. As seen
from the figure, for tags, the more mutual neighbors y has
with x, the more likely y is to get infected, i.e. strong links
are more likely to propagate tags. On the other hand, for
URLs the results are again inconclusive. The curve behaves
in the same manner as RC , which suggests that strong links
are just as likely to propagate as weak links. Intuitively, with
tags, one is more likely to agree with somebody who is a close
friend (possibly with many shared interests), whereas, with
URLs, we are just as likely to share information obtained
from close friends as the one from distant friends.

6. CONCLUSION
In this paper we looked at tag and URL propagation on

Twitter social network. After developing a new metric to
measure the external influence, we have found that external
sources have a significant contribution to URL and tag prop-
agation. As the tag becomes popular on Twitter, it travels
to more distant parts of the network and forms relatively
large cascades that over time start merging into the main
giant cascade. On the other hand, URLs travel shorter dis-
tances in the network and tend to spread mostly by forming
many small cascades that merge into the giant cascade. Fi-
nally, we found the that the probability of adoption of a tag
is directly related to the number of neighbors who already
adopted and the strength of ties with them. On the other
hand, for URLs, such tendencies do not hold. Among the
future directions we would like to validate the dynamics we
have observed on a larger set of tags and URLs and try to
develop a model that would predict future propagation of
URLs or tags at an early stage.
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