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ABSTRACT

It is well known that real-world networks from many do-
mains exhibit a large number of structural similarities, such
as the form of the distributions of node degrees, the spec-
trum of the adjacency matrix, and the degree of intercon-
nectedness. Some of these network statistics, such as the
clustering coefficient, capture local behavior, while others,
like the diameter, capture more global structure. After it
was shown that many well-studied classes of stochastic net-
work models, like Erdds-Renyi random graphs, do not ac-
curately capture most of these properties, many researchers
have proposed generative models that attempt to capture
various aspects of network structure. The stochastic Kro-
necker graph model has been promising because it appears
to capture many different properties reasonably well, rather
than capturing one at the expense of the others, and because
efficient algorithms exist for fitting the model to massive
datasets. However, due to its rigid construction, it is difficult
to modify or to extend to take advantage of richer datasets,
such as node or edge-level attributes that may be available.
This paper introduces and investigates binomial attribute
graphs, a new model inspired by the Kronecker graph con-
struction. Surprisingly, despite discarding a large amount
of structure imposed by the Kronecker graph construction,
the new model performs at least as well, and is much more
easily modified, as it follows standard probabilistic seman-
tics. Binomial attribute graphs are too simplistic to serve as
general-purpose network models, but they provide new in-
sight into why the Kronecker graph construction may work
and suggest directions for improvement.

1. INTRODUCTION

The recent availability of large, real-world datasets encoding
complex networks has led to a surge of research studying net-
works and their properties. A particular focus has been on
the computational analysis of social networks, partly due to
the availability of very large datasets in this domain. One
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surprising theme in this research has been the identifica-
tion of of recurring structural features in a myriad of very
different networks, including static features like power-law
degree distributions, small diameter (the “small world phe-
nomenon”), and skewness in the eigenvalues of the graph
adjacency matrix; as well as temporal features like shrink-
ing diameters and densification power laws. The fact that
the same characteristics appear again and again in different
domains has prompted an interest in network models, which
propose generative processes for network structure and hope
to uncover the fundamental processes that give rise to these
global characteristics.

The earliest work in this domain dates back to the seminal
paper of Erdés and Renyi on random graphs [3], in which
each pair of nodes has an independent, identical probabil-
ity p of being joined by an edge. Though this model has
led to a rich mathematical theory, the graphs produced by
this model do not match the empirical features of real-world
datasets. For example, random graphs necessarily have a
binomial degree distribution, while real-world networks ex-
hibit power-law behavior. Since then, researchers in various
fields have proposed a variety of formal models that attempt
to capture characteristics of real networks. One idea that has
dominated the literature is that of preferential attachment
[1], in which a new node w links to a node v with proba-
bility proportional to the degree of v. This rich-get-richer
quality produces the desired power-law behavior in degree
distributions.

However, it was recently observed that real networks exhibit
two surprising temporal properties [5]: (1) shrinking diam-
eters: in many cases, the effective diameter decreases as
the network grows; (2) densification power laws: networks
become denser over time and the average degree increases
(the number of edges grows superlinearly in the number of
nodes). Moreover, the densification process follows a power-
law pattern.

Models like preferential attachment have been assuming oth-
erwise, namely that the average degree is constant over time
(i.e. the number of edges grows linearly with the number of
nodes) and that the diameter is a slowly growing function of
the network size. A primary goal of the recent framework of
stochastic Kronecker graphs [4] is to capture these two prop-
erties while also exhibiting other well-known characteristics
like power-law degree distributions. By and large, Kronecker
graphs are able to match a wide variety of network proper-



ties; however, there is still scope for improvement, and there
are a number of awkwardnesses about the actual model that
would be helpful to remove.

The paper is organized as follows. Section 2 defines Kro-
necker graphs and reviews their properties. Section 3 intro-
duces binomial attribute graphs. Section 4 discusses experi-
ments with real data. Section 5 offers some general perspec-
tive on the results and concludes.

2. STOCHASTIC KRONECKER GRAPHS

The construction of stochastic Kronecker graphs is moti-
vated by the observation that many real-world networks fol-
low a fractal-like structure: within each community, there is
a subcommunity structure similar to the one observed at the
global network level. Defining this recursive property cor-
rectly is somewhat subtle, as a number of related methods
fail to produce graphs with the necessary properties. The
main intuition is to create self-similar graphs recursively by
repeatedly taking Kronecker products of some small initia-
tor matriz and using this to produce an adjacency matrix
for the graph.

Definition 1. Let A be a 2x2 matrix. Then the Kronecker
product of A with itself' is given by
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The iterated Kronecker product of a matrix with itself (“Kro-
necker power”) is denoted AWM so APl = A ® A. The Kro-
necker product of graphs is defined by taking the Kronecker
product of their adjacency matrices. A Kronecker graph of
order k is defined by K {k], where K is called the Kronecker
initiator matrix.

A number of properties of Kronecker graphs follow imme-
diately from the corresponding properties of the Kronecker
product itself, and a number of facts can be proven about
them.

A stochastic Kronecker graph is obtained in the following
manner. Let K be a 2x2 initiator matrix? where the entries

are real numbers in [0,1]. Form Py 2 K{k]. Then each entry
Puv € Pr is the probability of an edge between nodes u
and v. The matrix Pr can be thought of as specifying a
distribution over random (binary) adjacency matrices. To
sample from this distribution, sample edge appearance from
Bernoulli (py.) for each pair (u,v). An efficient algorithm
exists for estimating the 4 entries of K; from data, and a
Kronecker graph is considered to perform well if a graph
sampled from fitted parameters matches characteristics of
the original data with high probability.

'The general definition for any matrices A and B generalizes
this as one would expect.

2 Any initiator can be used, but 2 x 2 suffices in practice, by
model selection arguments.

Though this works (perhaps surprisingly) well in practice,
there are a few awkward properties:

1. Though the model can be used for forecasting in the
sense that one can iterate from Py to Pyy1 by taking
an additional Kronecker product, this causes the num-
ber of “nodes” in the subsequent timestep to double.
This is too coarse for many purposes and also con-
ceptually awkward, since identifiability between nodes
across time steps is lost. In particular, a single node
at time ¢t becomes k nodes at time ¢ + 1 if the initiator
matrix is k X k.

2. Because Py is formed from an iterated Kronecker prod-
uct, only graphs with 2* nodes can be represented. In
practice, if a graph has n nodes, one uses the smallest
k such that n < 2*, and hopes that the extra nodes
do not affect the fit. This usually seems to work in
practice, but is not very satisfying.

3. Because of the Kronecker construction, it is not at
all obvious how to embellish or modify the model.
By contrast, approaches based on probabilistic mod-
els are modular and have clear semantics (for example,
one can add additional levels to a hierarchical model,
change distributional assumptions, and so on).

3. BINOMIAL ATTRIBUTE GRAPHS

The following perspective on the Kronecker construction will
help suggest alternatives. Recall that if P; is a 2x2, then P»
is a 4x4, so P> nodes can be represented in terms of P; nodes
by making each P> node a pair of P; nodes: if the P; nodes
are labeled 0 and 1, then the P> nodes are (0, 0), (0,1), (1,0),
and (1,1). In Py, the probability of 0 linking to 1 is given by
the top-right entry, Pi(0,1). In P, what is the probability
of v = (0,0) linking to w = (1,0)? If v is called the first
node, and w the third (think of binary counting), then the
probability is P»(0, 2), which is P1(0,1)- P1(0,0) by Eqn (1).
Now comes the main ‘trick’: note that P1(0,1) - P1(0,0) =
Py (vi,w1) - Pi(v2,w2); i.e., use the corresponding entries of
v and w to indezr into Pi.

Generally, this lets us relate representations of P nodes to
the correct product of probabilities from P;. Label nodes
of Py as vi,v2,...,Uqk, where each node is now a binary k-
tuple. Given two nodes v and w in Py, the probability of an
edge can be written

k
p(v,w) = HPl(vi,wi). (1)
i=1
One can think of the v; as being binary attributes of v, and
P1 as encoding an attribute similarity matrix that encodes
the contribution to the linking probability by nodes agreeing
or disagreeing on attributes.

Kronecker graphs implicitly assume that every node has a
unique combination of attribute values, and that every com-
bination of attribute values is assigned to some node. In
other words, the first node in P, will always be (0,0,...,0)
and the final node will be (1,1,...,1) and all 2* possible
k-valued binary vectors will be covered in between.



Instead, suppose we do away with the Kronecker product
construction entirely, and sample binary vectors for each
node from some underlying distribution. A coherent prob-
ability of an edge can still be obtained using (1) by con-
sidering P; simply as a parameter matrix rather than an
initiator matrix for the Kronecker construction. This sug-
gests the following definition for a particularly simple model
of this type.

Definition 2. Let X\ be a Bernoulli rate parameter and let
V Dbe a fixed set of nodes. Let © be a 2 x 2 parameter matrix,
where the entries 6;; € © are in [0,1]. Let K € N.

1. For each v € V, draw K samples from Bernoulli (\)
independently and let A, be a vector of these samples.

2. For (u,v) € V xV, determine whether there is an edge
u — v by sampling from

u — v ~ Bernoulli <H O(Au(7), Av (2))) .

i=1

The result is called a binomial attribute graph.

This is one of the simplest possible models one could define
that still incorporates a Kronecker-style initiator matrix, in
the sense that all edge appearances are completely indepen-
dent, and the model does not explicit impose any structure
at all on the resulting graph. In particular, the recursive
Kronecker construction is completely gone, and there is no
reason to expect recursive, self-similar structure of the kind
produced by the Kronecker graph. Indeed, one would ex-
pect this model to perform more like Erdés-Renyi random
graphs than something as rigidly structured as a Kronecker
graph, but despite this, the results will turn out to be very
similar to the Kronecker case.

This construction has the effect that the number of nodes in
the model is no longer fixed as 2%, and the size of attribute
vectors K need not be fixed at around log, |V|, and that
different classes of graphs can be represented, since not all
2% possible binary vectors need to be accounted for.

Moreover, it is easy to see how to embellish this simplis-
tic model in various ways. For example, we may want the
Bernoulli rate A to vary per node (or by membership in some
latent or observed groups), in which case we can assume that
each node v is assigned a rate A\, from some underlying prior
distribution, which may be the conjugate prior Beta(c, 3)
or something more complex. We may not want to restrict
some of these values to being binary, in which case we can
increase the size of © and replace the Bernoulli distributions
with multinomials. We may not want edge appearance to be
completely independent for all pairs of nodes, in which case
the sampling distribution in the second step can be replaced
with something more complex that depends on the existing
edges in the graph. The attributes need not be considered
to be fully latent variables, and binary features from real
data could be used. The question in all these cases would
be the extent to which these features help fit real data.

4. EXPERIMENTS

The major questions about this model are (1) how similar
its graphs are to stochastic Kronecker graphs; (2) how well it
is able to match the properties of real data; and (3) how the
various parameters and hyperparameters, such as K, affect
the quality of the model fit.

For background, Kronecker graphs have been assessed in the
following manner: first, fit the parameters to a particular
dataset; second, generate a synthetic graph using those pa-
rameters; third, compare the generated graph and the real
graph in various ways to assess the fit. Some of the metrics
used are the following:

1. Degree distributions: one can compare the in-degree
and out-degree distributions (which generally follow
power laws).

2. Small diameter: is the diameter of the synthetic graph
close to the true diameter? Since the diameter is sus-
ceptible to outliers, a modified statistic called the ef-
fective diameter [4] is used instead.

3. Hop plots: these extend the notion of diameter by plot-
ting the number of reachable pairs within h hops as a
function of the number of hops h. This gives a sense
of how quickly node neighborhoods expand with the
number of hops.

4. Singular values: this is a plot of the singular values
of the adjacency matrix, which has also been found to
have consistent structure across datasets.

5. Node triangle participation: a local statistic measuring
how many triangles each node participates in; we can
plot the statistic by node degree.

6. Clustering coefficient: a long-used measure of local
clustering behavior [7]; we can plot the average clus-
tering coefficient by node degree.

These various plots can be examined visually for qualita-
tive similarity (which is often enough to outperform many
other models, which are completely hopeless for some of
these properties), or one can use a goodness-of-fit statistic
like the Kolmogorov-Smirnov D-statistic for a quantitative
measure of discrepancy between the synthetic and true dis-
tributions of the statistics above. One could also use general
measures of discrepancy between distributions, such as the
KL-divergence or Hellinger distance.

To make binomial attribute graphs as directly comparable
to Kronecker graphs as possible, we set © to the fitted® val-
ues of the Kronecker initiator matrix Py, set K = [log, V]|
(so the A, are the same size as they would be in the Kro-
necker case), and then fit A so the expected density of the
binomial attribute graph matches the true one. This is done
by minimizing

(VZ=V)-(Bo0-(1=A)*+(Bo14+010)- X (1= X)+6011-A%) * —E)?

3Kronecker graph parameters are fit via KronFit [4], a
Metropolis-Hastings algorithm that exploits the recursion.



with respect to A, subject to A € [0,1]. Here V and E are
the number of nodes and edges in the real data. This prob-
lem can be solved quickly using nonlinear bound-constrained
optimization algorithms such as L-BFGS-B [2].

4.1 Autonomous Systems

Here, we consider a static dataset consisting of connectiv-
ity among internet Autonomous Systems [6]. The internet’s
router graph can be organized into subgraphs called Au-
tonomous Systems, and a communication network among
these can be formed by examining BGP logs that show which
pairs exchange traffic. This data has 6474 nodes and 26467
edges. See Figure 1 for sample fits. These graphs reveal
that both models are substantially better than Erdds-Renyi
graphs (which is expected for Kronecker graphs, but not
necessarily binomial graphs), and are extremely similar to
each other across all the various network statistics. The di-
ameters of the graphs are also very similar (between 8 and
11 in all cases).

Though in this particular case all the statistics match quite
well, this is not necessarily consistent across datasets. In
particular, these models can do poorly on clustering and
triad participation, as those statistics measure very local
properties, and these models are highly ‘global’ in flavor.
Poorer results of this kind are seen on datasets like citation
and collaboration networks from arXiv (results not shown
for space reasons).

4.2 Sparsity Patterns

Because of the nature of the Kronecker product, the adja-
cency matrix of a stochastic Kronecker graph will have a
distinctive, fractal-like sparsity pattern that can be seen via
Matlab spy plots. To directly compare binomial and Kro-
necker graphs to each other, we can ask whether the graphs
produced by the binomial model have any similar quality.

Because there is no explicit node ordering in the binomial
model, unlike the Kronecker model, the matrix will look like
random noise, but by lexicographically reordering the nodes
in the binomial graph by their attribute vectors A, (treat
them like binary numbers and sort in ascending order going
left to right), the adjacency matrix can be compared to the
Kronecker case.

Figure 2 shows that despite not explicitly modeling any frac-
tal structure, the binomial model can recover this structure
by virtue of having a “wide enough variety” of per-node at-
tribute vectors and the same parameter/initiator matrix.
This provides some intuition as to why this rather unstruc-
tured model is so similar to one as rigid as Kronecker graphs.

4.3 Varying Model Complexity

Is the quality of the model fit affected by changing K to be
larger or smaller than [log, V]? To examine this, we con-
sider the Autonomous Systems data, which normally uses
K = 13, and considered values of K between 7 and 17. For
each of these different values of K, the parameter X is refit.
The main result, as seen in Figure 3, is that varying K does
not make a substantial difference to the quality of the model
fit. Table 1 shows Kolmogorov-Smirnov statistics that com-
pare each of the listed distributions against the distributions
from the Autonomous Systems data.
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Figure 2: Sparsity patterns in adjacency matrices.

S. CONCLUSIONS

We considered many experiments in addition to these, and
this subset has been selected just to give some flavor of the
study. To some degree, the fact that binomial attribute
graphs work at all raises more questions than it answers.
One immediately useful conclusion, however, is that the rea-
son Kronecker graphs work is not because of the actual Kro-
necker construction — this construction actually turns out to
be a red herring. All the modeling power, in some sense,
is contained in the © matrix, which encodes a high-level
summary of the structure of the network. For example, if
© = [0.9,0.5;0.5,0.1], which is a common template, this
suggests that the graph roughly consists of a tightly linked
core (top left) with an intermediate number of cross-links
(off-diagonals) with a sparsely connected periphery (bottom
right). In other words, the fitted © itself encodes some struc-
ture of the network, and this is the primary driver behind
the modeling power of Kronecker graphs. It is rather sur-
prising that these four parameters do so much. Binomial
graphs work similarly well because the Bernoulli (A) sam-
pling scheme produces a similar variety of attribute vectors
as the Kronecker graph, so as long as the distribution of
attribute vectors has sufficient variance, this is enough to
allow the © matrix to impose its structure (Figure 2 being
one way of seeing this).

Future work in this direction could take two directions: first,
one could attempt to design a more sophisticated variant of
the binomial attribute model that performs better at some
tasks; second, it would be worth trying to understand at a
deeper level why the binomial model works as well as it does.
In particular, a better theoretical understanding of why this
scheme suffices may help in designing improved generative
network models.
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Figure 1: Fits for real (red), Kronecker (green), binomial (blue), and Erdds-Renyi (pink) graphs.

In Out Cluster Singular Triad
Kron[8192,24894] 0.449341 0.448364 0.124876 0.212924 0.130312
B(0.704,7)[6474,28818] 0.342910 0.351251  0.080156  0.176205 0.176861
B(0.609,9)[6474,30066] 0.342138  (.345845 0.095077  0.115706 0.158171

B(0.535,11)[6474,28241]  0.365153  0.354032  0.127567  0.130091 0.118628
B(0.476,13)[6474,26079]  0.381372  0.381989  0.144830  0.089906  0.098085
B(0.428,15)[6474,28509]  0.349707 0.343528 0.147132 0.073682  0.123108
B(0.388,17)[6474,27611]  0.351715  0.356348  0.175157  0.081232  0.111677

Table 1: Kolmogorov-Smirnov statistics comparing fitted distributions to real data. The numbers in paren-
theses are parameters A\ and K and the numbers in brackets are node and edge counts.
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Figure 3: Fits for real (red), Kronecker (green), and binomial graphs with K € {7,9,11,13,15,17}.



