
Analyzing the Temporal Dynamics of the News Cycle

Jaewon Yang
Stanford University

crucis@stanford.edu

ABSTRACT
We explore the dynamics of the evolutionary patterns in the
popularity of topics. To measure the popularity quantita-
tively, we regard the quoted phrase as a carrier of a topic,
and track the frequency of its quotation over time. Our mo-
tivation starts from finding distinctive patterns that arise in
the temporal behavior of the popularity. To find these pat-
terns, we formulate a time series clustering problem based
on their shape. Since our goal is to find a set of time series
that have common shape, we propose a new similarity mea-
sure for shape, which is invariant from scaling and shifting,
and develop a new method of clustering for our measure.
Our algorithm proves to give better results to k-means both
in theoretically and in experimentally. Based on these clus-
ters, we investigate the role of big web site in the evolution
of the popularity of topics. We observe that the interaction
of web site and topics is very distinct over clusters, and that
the overall influence of web sites show a quick decay over
time.

1. INTRODUCTION
Quantitative analysis of how topics gain and lose popular-
ity across the Web has drawn much attention from various
fields such as computer science, business, and social science.
Despite the intensity of attention, the questions about the
temporal dynamics of the popularity of topics remained as
an open question. The central reason is the difficulty in
measurement of popularity. It is very challenging to observe
the evolution of every topic around the web since any topic
can polymorph as it propagates. Tracking this change, either
manually or by a sophisticated algorithm, cannot be feasible
because of huge amount of information. Recently, Leskovec
et al. [3] suggested a algorithm of tracking the transition
of topics that is robust and simple enough to scale up to
massive data. [3] regarded quoted phrases as the unit for
propagation of topics. [3] succeeded to find a group of re-
lated quoted phrase from the data during the last U.S. elec-
tion. For each clustered phrases, [3] made a detailed record
about which web site mentioned which phrase at what time.

Using the result of [3], we perform in-depth analysis of the
dynamics behind the evolution of topics.

2. FINDING DISTINCTIVE EVOLUTIONARY
PATTERNS : ALGORITHM

Our first question is what are the evolutionary pattern of
topics in terms of popularity. Some phrases will be quoted
for a lone time while others will not. In order to measure
the temporal evolution of phrases’ popularity, we generated
a time series for each phrases, by measuring the frequency
of quotation, which we will call ”volume”, during a certain
interval of time. Then, it is obvious that the shape of this
time series represents the evolutionary pattern. If we can
find a group of phrases that have similar shape in their time
series, then we can consider the centroid of the cluster as a
common pattern observed in some phrases. Therefore, Our
question becomes how to cluster time series based on their
shape.

2.1 Measure of Similarity in Shape
Measuring the similarity in shape is very difficult, especially
with time series we have. They are so diverse in their abso-
lute value, and the timing of reaching peak, as in the figure
1. We need to resolve the both issues about scale and shift.
One might normalize each time series by a certain criteria
and use ordinary distance measures such as euclidian dis-
tance. However, there can be numerous criteria about which
value to normalize, such as sum, peak, or norm, and it is not
clear which one is the best for the problem. To avoid this
ambiguity, we propose a new measure of similarity which is
invariant to scale and shift. Given two time series x and y,
we propose d̂(x, y) as follows:

d̂(x, y) = min
α,k

||x− αyk||
||x||

where yk is the result of shifting y by k time units. This met-
ric finds an optimal shift and scaling coefficient for matching
two time series. Computational complexity is reasonable
since we can find α as a closed form when the shift k is
fixed. Simple algebra shows that α = xT y

||y||2 . There is no

straightforward method for searching k, but we can try a
few number of shift after aligning the peak of two time se-
ries. This heuristic finds the shift that is very close to the
optimal since the aligning peak time is very close to the op-
timal shift, given that most time series have a very sharp
peak. This metric also has an interesting geometrical inter-
pretation. If we regard time series as vectors, d̂(x, y) is the

Figure 1: Two time series for phrase volume over
time, from the MemeTracker web site[1]. The peak
value of top and bottom series are 123 and 45 re-
spectively.

Figure 2: The geometrical interpretation of d̂(x, y).

distance from x to its projection on y, as in the figure 2.
We can see that d̂(x, y) is just sin(θ), where θ is the angle
between two vectors.

2.2 K-Spectral Centroid Clustering
We introduce a novel algorithm, K-Spectral Centroid(K-

SC), an iterative algorithm that is suitable for d̂(x, y), our
new metric. Similarly to k-means, we iterative between two
stages, an assignment step and a refinement step. Our goal
is to find an assignment and the center of the K clusters
that minimize the sum of squared distance within clusters,
namely F ,

F =
∑

k

∑
xi∈Ck

d̂(xi, µk)2, (1)

where µk, Ck is the center and the assignment varialbe of the
k-th cluster. More formally, we are given xi’s, a set of time
series, and the number of cluster K, and start clustering
with random guess of K clusters. In an assignment step,
we assign each xi to the closest cluster, based on d(·). This
process is identical to the assignment step of k-means except
that a different distance function.

After finding the membership for every cluster, both K-SC
and k-means update the new center for each cluster. k-
means updates the new center to be the average of all mem-
bers of the cluster, because the mean is the minimizer of
sum of squared Euclidean distance within cluster. However,
we are using a different distance function, d̂(x, y). The new
center for our algorithm, µ∗, should be the minimizer of the
sum of d̂(xi, µ)2 within the cluster:

µ∗ = arg min
µ

∑
d̂(xi, µ)2. (2)

Since an iterative algorithm like K-SC should update nu-
merous times until convergence, it is crucial how fast the
above minimization problem can be solved. The simplicity
in update step of k-means made it prominent clustering al-
gorithm for large data. Fortunately, the sum of d̂(xi, µ)2

also has unique minimizer in a closed form. It turns out
that µ∗ is the eigenvector of a matrix K corresponding its

smallest eigenvalue, where K = (
∑

x

xixT
i

||xi||2 − I)2. Here is

the derivation :

µ∗ = arg minµ

∑
x
||αxi−µ||2
||µ||2

= arg minµ
1

||µ||2
∑

x || xT
i µ

||xi||2 xi − µ||2

= arg minµ
1

||µ||2
∑

x ||xixT
i µ

||xi||2 − µ||2

= arg minµ
1

||µ||2
∑

x ||(xixT
i

||xi||2 − I)µ||2

= arg minµ
1

||µ||2
∑

x µT (
xixT

i
||xi||2 − I)2µ

= arg minµ
1

||µ||2 µT ∑
x(

xixT
i

||xi||2 − I)2µ

µ∗ = arg minµ
µT Kµ
||µ||2 , K = (

∑
x

xixT
i

||xi||2 − I)2

Instead of finding a mean of members, we find a small-
est eigenvector related to the sum of spectral expansions
of members, namely ”Spectral Centroid”.

2.3 Speed-up by Incremental Approach
Although the update step of K-SC has solution in a closed
form. The complexity of finding an eigenvector follows O(d3),
where d is the dimensionality of data. Since we deal with
Time-series that span for a long period of time, O(d3) is
not trivial cost. Similar to k-means, in addition, the perfor-
mance and speed of K-SC is very sensitive to initialization,
especially in high-dimensional case[4]. We address these two
problem by using the approach of Ik-means. Using Haar
wavelet, we can represent time series with different resolu-
tion. Ik-means starts k-means from coarser resolution, after
k-means converges for that level, it uses the result as a initial
point for the next level. In low dimensional space, k-means
is both fast and robust. In high resolution, Ik-means con-
verges faster than normal k-means because they start from
more plausible point than random initialization. Following
this idea, we can reduce the running time of K-SC algorithm
to comparable level to that of k-means, as will be discussed
in the next section.

3. EXPERIMENTAL RESULT OF K-SC CLUS-
TERING

Among total 71,000 phrases in the data set, we choose 1000
phrases with biggest total volume. Then, we exclude noisy
quotes such as ”I love you” or ”I don’t know” by picking the

Table 1: Statistics of the results of clustering

Method F
∑

d̂(µi, µj)
2

KM with NO 52.1 0.3
KM with Peak 51.1 3.0

K-SC 41.2 3.1

Table 2: The running time of the methods
Method Running time

KM 11m 54s
K-SC 18m 01s

Incremental KM 07m 50s
Incremental K-SC 10m 02s

phrases that keep high volume anytime.1 After eliminating
spurious phrases, we perform K-SC clustering for 6 clusters.
As a baseline, we compare k-means clustering without any
normalization, and with normalizing peak volume to be 100.
Figure3 shows the result of three way of clustering. While
the centers of the clusters from k-means with no normal-
ization look very close each other, the centers from other
two cases are quite distinct. Three of the 6 clusters stays in
high volume for a longer time than 1 day. Other 3 clusters
with short duration also have different shape in their rising
and decay. In order to measure the performance of K-SC in
quantitative manner, we measured F in the equation 1. To
measure the distinctiveness among the centers of clusters,
we compute the sum of squared distance between the cen-
ters of clusters,

∑
d̂(µi, µj)

2; its big value means that it is
hard to match clusters with scaling and shifting. In the table
1, K-SC algorithm shows the best similarity inside clusters,
and the biggest dissimilarity between the centers of clusters.
We tried sum normalization and standardization as well but
peak normalization turns out the best normalization for our
data. This results show that K-SC algorithm successfully
find a distinct clusters that share a common shape inside
them, even from a data that are very diverse in scale and
shift.

3.1 Speed-up by Incremental Method
We show that K-SC maintain competitiveness in its speed
in table 2. Although there exists a considerable gap between
a simple k-means and simple K-SC, we can reduce this gap
significantly by using incremental approach. While the one-
shot K-SC consumes about 60% more time than simple k-
means, incremental K-SC takes only 25% more time than
incremental K-means, and it is faster than simple k-means.
This results suggest that K-SC can be used in large data set
and would show reasonable speed.

3.2 Additional Issues about Clustering
Length of Sequence: In the original data set, most of
phrases continued over 6 months. Considering that most of
them have sharp peak, the quotes made a long time before
or after the peak is likely to be a noise, a random quote. For
better precision of calculation, the dimensionality reduction
is crucial as well. Also, we are interested in the dynamics in
fine scale, which happens hourly during the peak of certain

1we measured the ratio between volume around the peak
and volume far outside the peak.

Figure 4: The value of Hartigan’s index over the
number of clusters

Figure 5: The value of Average Silhouette over the
number of clusters

phrase. We conclude that we have to truncate a time-series
around the peak. In order to find where to truncate, we mea-
sured the time when the volume at that time is over a certain
fraction of the peak volume for the first time,(”appearing
time”) and the time when the volume stays over the fraction
of the peak volume for the last time(”quit time”). When we
measure the median of the duration between two times for
the fraction of 20%, the value was around 100. The plot for
various value of fraction is shown in the figure 6, where the
median is the second line from the top.

Number of Clusters: Choosing the number of clusters
for k-means is still an open question. Since the objective
function of k-means and K-SC, the sum of squared dis-
tance within cluster, is non-decreasing in the number of clus-
ters, comparing the objective function does not make sense.
Thus, we employed two major measures, Hartigan’s Index
and Average Silhouette, to measure the quality of clustering
over different choice of the number of clusters. Both of them
are independent of the number of clusters, and the higher
value means the good quality. Figures 4 and 5 suggest that
6 clusters give relatively good value of index compared to
other numbers.

Figure 3: The first row: k-means with no normalization The second row: k-means with peak normalization
The third row: K-SC clustering

Figure 6: The time gap between ”appearing time”
and ”quit time” versus a range of fraction.

4. FINDING THE INFLUENCE OF NEWS
WEB SITE

Having found the distinctive clusters from our data set, we
turn to the next question: what are the factor of these evo-
lutionary patterns? and how we can estimate it? Among
many candidates for factors, we focus on the influence of
notable web sites. This hypothesis is based on our intuition
that, a quotation from a massive news agency would cause
more people to mention the phrase. The data about which
web site mentioned which phrases can easily be found from
our data set. We choose the 100 web sites based on their
total quotes on the 1000 phrases we choose earlier. In order
to estimate their influence, we make a hypothesis that the
volume of the phrase at the next time is the sum of influ-
ences that big web sites that mentioned it during recent a
few hours. Mathematically, it is expressed as the following

linear equation:

V (t) =

k=T∑

k=1

Mi(t− k)Ii(k) + c

where V (t) is a volume at time t, Mi(t− k) is the indicator
function of the i-th website mentioning the phrase, Ii(k) is
the influence of i-th website after k time unit, and c is a
constant bias term. From a data set, we can find V (t) and
Mi, and our goal is to estimate Ii and c. This problem is
an estimation problem which can be converted to a convex
optimization problem by using a convex loss function, l

minimize
∑

t l(V (t)− (
∑k=T

k=1 Mi(t− k)Ii(k) + c))
subject to . . .

If we choose l as L2-norm, it becomes a least square prob-
lem. Instead, we can use a Huber norm[2], which acts like
L1-norm for large values, and L2-norm for small values, for
being robust to outliers. In addition, we could add the con-
straints about Ii’s in . . . part(”subject to”), such as that
Ii should not be negative, or that Iik should be smooth
enough. Another flexibility comes from the choice of T , the
total time duration of the influence.

4.1 Impact for Clusters
The distinct clusters that we find in the previous sections
would open better opportunity to see how big web sites in-
teract with different type of phrases. For each clusters, I
plotted the average timing of quotation of top 30 websites.
The further bottom means the more quotation the website
made, and the further left means that the average timing
is earlier. Figures 7 and 8 shows that the timing and the
name of websites are considerably different. Observing this
difference, we decide to set up a separate model for each
clusters. Finding the reason for such difference would be an
interesting open question.

5. EXPERIMENTAL RESULT
We are to estimate the influence of web sites from our data
set. Since we have a number of choices, we have to select

Figure 7: The timing and size of big websites for the
first cluster

Figure 8: The timing and size of big websites for the
last cluster

Table 3: The best model for each clusters
Cluster T Obj NonNeg ||error||/||V ||

0 8 H Y 0.63
1 16 H Y 0.68
2 16 H Y 0.61
3 8 H Y 0.92
4 16 H Y 0.63
5 8 H Y 0.81

Figure 9: The average influence of 100 big web sites
over time

a model before estimation. Different models have different
objective functions and various degree of flexibility. For a
fair comparison, we perform a 5-fold cross-validation test,
where we estimate a model from 80% of data, and validate
its error from the rest 20%, and repeat it 5 times so that
every data is used for validation once. The model with the
smallest validation error is chosen. Table 3 shows the best
model chosen and their cross validation error, expressed in
the fraction of L2-norm. In every cluster, using Huber norm
as a loss function gives better accuracy than using L2-norm,
and applying nonnegativity constraint(Ii ≥ 0) help better
estimation, which is consistent on our intuition that a men-
tion from big web sites would not cause a negative effect on
the popularity of the phrase. We averaged all Ii(k) we esti-
mated over time index k. Figure 9 shows that the average
influence shows a quick decay in general.

6. FUTURE WORK
We observe that K-SC algorithm can find a distinctive shape
regardless of scaling and shifting issues. We can apply K-SC
algorithm for other cases where we are interested in cluster-
ing by the best matching score between data, like what we
had in ”matching in shape”.

For estimation of influence, much work remains to be done.
First of all, the validation error and reconstruction error
of our model is too high. Part of the reason comes from
the noisy nature of the original data. However, we could
find better solution by incorporating other factors. Re-
cently, we observed that Auto Regressive and Moving Av-
erage(ARMA) model can perform comparably well to our

model. We can combine ARMA model with our variable
to one unified model which is called ”ARMAX” model. I
would evaluate the performance of ARMAX model and see
what ARMAX model would estimate as the influence of
web sites. Also, using some semantic information, such as
”phrases about politics”, could be an interesting possibility
to explore.

7. REFERENCES
[1] Memetracker website. http://memetracker.org.

[2] S. Boyd and L. Vandenberghe. Convex Optimization.
Cambridge University Press, 2004.

[3] J. Leskovec, L. Backstrom, and J. Kleinberg.
Meme-tracking and the dynamics of the news cycle. In
KDD ’09: Proceedings of the 15th ACM SIGKDD
international conference on Knowledge discovery and
data mining, pages 497–506, New York, NY, USA,
2009. ACM.

[4] V. M. K. E. Lin, J. and D. Gunopulos. Iterative
incremental clustering of time series. In Proceedings of
the IX Conference on Extending Database Technology,
2004.

