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ABSTRACT
Setting prices for items is difficult because one needs to look
at prices other substitutable as well as complimentary items.
In a co-purchasing network, co-occurence of items can be
exploited to tweak item prices for revenue maximization.
In our report, we investigate the effects of co-occurrence of
items on their prices. In general this problem seems to be
NP-Hard. We propose heuristics based on properties of the
co-purchasing graph and compare them on the basis of their
overall revenue gain and convergence to good solutions.

1. INTRODUCTION
In a co-purchasing network, there is a huge opportunity to
exploit tweaks in item prices to maximize overall revenue of
a service. To get a flavor of such an opportunity consider
the following example. Given a pair of items A and B that
are bought together frequently. Assume that while purchas-
ing these two items together, buyer’s main intention is to
purchase item A and since item B was conveniently located
near A, the buyer ended up picking B as well. In such a
scenario, decreasing the price of A by say 5%, while increas-
ing the price of B by say 10% could possibly generate more
revenue.

In a general co-purchase network, the effect of price changes
of items cascades to its neighbors. Neighbors of an item A in
a co-purchasing graph are the items that are co-purchased
with A. Consider the following case where items A1 and A2

co-occur, A2 and A3 co-occur and so on. In this scenario,
a pair-wise price changes of A1 and A2 needed to maximize
revenue influences pairwise changes of A2 and A3 and so on.
Therefore, changing the price of a an item influences the
revenue due to other items.

We assume that we’re given a collection of shopping carts
with items and their relative prices. We transform this col-
lection into a co-purchasing graph. However, to be able to
analyze this problem, we need a model that captures the fre-
quency of items changes with respect to change in the price

of the items. This model with its underlying assumptions is
described in section 2. Refinements to this model are pro-
posed in section 3. Solution strategies based on local search
are discussed in section 4. Section 5 describes the exper-
imental setup and results and section 6 delves into future
work.

2. PRELIMINARIES
A co-purchasing graph is an undirected graphG(V,E), where
V is the set of items and u − v ∈ E iff items u and v are
co-purchased together. Associated with the co-purchasing
graph are the following three functions: price : V → R,
f : V → R and g : E → R. The function f(u) represents
the number of times item u has been purchased alone and
function g(u, v) represents the number of times u and v are
co-purchased.

Revenue in a co-purchasing networkG(V,E) described above

is given by
X
u∈V

price(u)× (f(u) +
X
u,v∈E

g(u, v)). Now when

the price of an item u changes to price(u) × (1 + ∆(u)),
f(u) changes to f(u)× (1 + ∆(f(u))) and g(u, v) changes to
g(u, v)× (1 + ∆(g(u, v))).

2.1 Assumptions
The first assumption that we make is to restrict price changes
to within a small threshold. In a real-life setting, factors as
cost of manufacturing, marketing, distribution etc. are in-
herent in setting a price for an item. Hence, it is realistic to
assume that the once an item is priced, significant increase
or decrease of the price is not permitted. This assumption
leads to a simplification when modeling change in frequency
of items based on change in prices. This threshold is given
by a constant χ such that ∀u ∈ V, |∆(u)| ≤ χ.

After restricting ourselves to small price changes, we assume
a linear change in frequency with respect to change in price.
When the price of an item u changes to price(u)×(1+∆(u)),
the relative change ∆(f(u)) in the isolated frequency f(u) is
−∆(u). When the price of an item u changes to price(u)×
(1+∆(u)) and that of v changes to price(v)×(1+∆(v)) , the
relative change ∆(g(u, v)) in the number of times u and v are
co-purchased g(u, v) is −(weightu×∆(u)+weightv×∆(v))
for some constants weightu and weightv respectively.

2.2 Problem Statement



Our goal is to compute the following:

arg max
|∆(u)|≤χ,|∆(v)|≤χ

X
u∈V

p′(u)× (f ′(u) +
X
u,v∈E

g′(u, v)))...(1)

where

8<: p′(u) = price(u)× (1 + ∆(u))
f ′(u) = f(u)× (1−∆(u))
g′(u, v) = g(u, v)× (1− (wu∆(u) + wv∆(v))

Our maximization problem turns out to be an instance of
range estimation in quadratic polynomials. In general, range
estimation in quadratic polynomial is NP-Hard as discussed
in [2] and so it seems that our problem would be NP-Hard
as well. Instead of looking for approximation algorithms, we
look at the properties of the graph and employ local search
procedures to iteratively improve the overall revenue given
our model for price changes.

Note that the problem is not interesting under any arbitrary
assignment of weights wu and wv. For e.g. when all items
are equally influential, i.e. ∀u ∈ V,wu = 1, any change in
price will lead to a reduction in overall revenue. This is
obvious from equation 1.

3. REFINEMENTS
In the previous section, we saw that if the weights of both the
items were equal then the problem degenerates into a case
when the optimal price change is 0 for every item. Here
comes the notion of influence. Let us define influence, by
referring to the example previously used in section 1: Lets
say A and B are co-purchased together. On decreasing the
price of A by say 5% and increasing the price of B by say
10% we find that we generate more revenue. In fact, g(A,B)
increases due to this new price assignment. This entails
that change in price of A dominates the value of g(A,B)
rather than change in price of B. In this example, A is more
influential than B.

However, there are problems discussed earlier, when we try
to set the influences arbitrarily i.e. wu for each item u.
In fact, when we solve for constraints on wu and wv, we
observe that if ∀u, v, wu +wv < 1, the total revenue mostly
increases with decrease in price of both items, and vice-
versa. Therefore, to distribute the bias evenly across these
two cases, we choose influences ∀u,wu randomly between 0
and 2.

The only missing piece in the model now is the computation
of ‘f ′ and ‘g′ values. We solve this using a procedure that
takes as input a set of shopping carts {Si}, 1 ≤ i ≤ k and
constructs a co-purchasing graph G(V,E). Each cart Si is
of the form {itemj}, 1 ≤ j ≤ li where li is the number of
items in shopping cart Si. We make the following simplifying
assumptions:

1. For sake of simplicity, the item frequencies in the cart
are assumed to be 1.

2. If two carts Si and Sj contain an item u then we as-
sume that the same price(u) was paid for both carts.

Translate(S[][])
{
for i← 1 to |S|
if |S[i]| = 1 then f(S[i][j])← f(S[i][j]) + 1
else
K = |S|+

`|S|
2

´
for j ← 1 to |S[i]|
f(S[i][j])← f(S[i][j]) + 1/K
for k ← j + 1 to |Si|
g(S[i][j], S[i][k])← g(S[i][j], S[i][k]) + 1/K
}

The functions f(u) and g(u, v) now represent frequency scores
instead of actual frequency. This change is necessary to en-
sure that total revenue in G(V,E) is equal to the total rev-
enue across the shopping carts {Si}.

4. LOCAL SEARCH HEURISTICS
Since the problem is hard in general, we seek to employ lo-
cal search heuristics based on properties of the co-purchasing
graph. In this study, we investigate the following four strate-
gies:

1. Strategy1: Let u be the item whose price change
yields maximum revenue gain. Fix the price of u and
iterate over the rest of the items.

2. Strategy2: Let u − v, be an edge in the graph G
such that locally changing the price of u and v yields
maximum revenue gain. Break ties arbitrarily. Fix the
price of u and v and iterate over the graph induced by
rest of the items.

3. Strategy3: Same as strategy 2 except we break ties
based on the number of triangles in which the edge
participates.

4. Strategy4: Order the items statically based on the
maximum increase in revenue that can achieved by
varying respective item prices. Pick the items in this
order and locally fix their prices.

5. EXPERIMENTS
We randomly generated 10 co-purchasing graphs with 10,000
items for our experiments. 10 million shopping carts were
generated for each case. We executed the four heuristics on
each of the co-purchasing graphs and recorded the final rev-
enue, increase in revenue with every price change up to 1,000
price changes. The degree distribution of the randomly gen-
erated co-purchasing network was found to mimic a power
law similar to Amazon’s co-purchasing data set [1]. We set
the threshold for price change to be 7%. The influences of
the nodes were randomly generated for each experiment.

Surprisingly for every random co-purchasing network, Heuris-
tic 4 performed the best - both in terms of overall revenue
and in terms of convergence to a good revenue. The heuris-
tics in order of performance are: Heuristic 4, Heuristic 1,
Heuristic 2, Heuristic 3 (Heuristic 4 being the best). The
results are shown in figure 1.



Figure 1: Comparison of performance of Local Search Heuristics

6. CONCLUSION AND FUTURE WORK
Co-occurence of items in a co-purchasing network induces
certain dependencies on optimal pricing of items. Intelli-
gently tweaking the prices of the items may substantially
increase overall revenue.

From our experiments over random co-purchasing graphs,
we conclude that a greedy static ordering of nodes based
on potential revenue maximization leads to higher overall
revenue amongst the local search heuristics investigated. If
prices of all items are more or less similar, then greedily
picking nodes based on their influences and locally fixing
their prices would lead to a good overall revenue gain.

However our model is still very restrictive and we would like
to extend the expressivity of the model. For e.g., we would
like to be able to capture the following scenario: item A and
item B are co-purchased together. However due to price
changes of A and B, some co-purchasers of A and B shift
to buying A alone, some shift to B and others buy neither.
It is important to model each of these transitions to mimic
consumer behavior.

We’re currently investigating these topics. It would also be
interesting to evaluate these heuristics over other real co-
purchasing data-sets.
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